Skip to main content
Log in

Magnetic moments of JP = \( {\frac{{3}}{{2}}}\) + decuplet baryons using the statistical model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

A suitable wave function for the baryon decuplet is framed with the inclusion of the sea containing quark-gluon Fock states. Relevant operator formalism is applied to calculate the magnetic moments of J P = \( {\frac{{3}}{{2}}}\) + baryon decuplet. The statistical model assumes the decomposition of the baryonic state in various quark-gluon Fock states and is used in combination with the detailed balance principle to find the relative probabilities of these Fock states in flavor, spin and color space. The upper limit to the gluon is restricted to three with the possibility of emission of quark-antiquark pairs. We study the importance of strangeness in the sea (scalar, vector and tensor) and its contribution to the magnetic moments. Our approach has confirmed the scalar-tensor sea dominancy over the vector sea. Various modifications in the model are used to check the validity of the statistical approach. The results are matched with the available theoretical data. A good consistency with the experimental data has been achieved for \( \Delta^{{++}}_{}\) , \( \Delta^{{+}}_{}\) and \( \Omega^{{-}}_{}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CMS Collaboration (S. Chatrchyan et al.), Phys. Rev. Lett. 108, 252002 (2012)

    Article  ADS  Google Scholar 

  2. CMS Collaboration (S. Chatrchyan et al.), JHEP 07, 163 (2013)

    ADS  Google Scholar 

  3. S. Coleman, S.L. Glashow, Phys. Rev. Lett. 6, 423 (1961)

    Article  ADS  Google Scholar 

  4. Particle Data Group (K.A. Olive et al.), Chin. Phys. C. 38, 090001 (2014)

    Article  Google Scholar 

  5. A. Bosshard, C. Amsler, M. Doebeli, M. Doser, M. Schaad, J. Riedlberger, P. Truoel, J.A. Bistirlich et al., Phys. Rev. D 44, 1962 (1991)

    Article  ADS  Google Scholar 

  6. H.T. Diehl, S. Teige, G.B. Thomson, Y. Zou, C. James, K.B. Luk, R. Rameika, P.M. Ho et al., Phys. Rev. Lett. 67, 804 (1991)

    Article  ADS  Google Scholar 

  7. N.B. Wallace, P.M. Border, D.P. Ciampa, G. Guglielmo, K.J. Heller, D.M. Woods, K.A. Johns, Y.T. Gao et al., Phys. Rev. Lett. 74, 3732 (1995)

    Article  ADS  Google Scholar 

  8. M. Kotulla et al., Phys. Rev. Lett. 89, 272001 (2002)

    Article  ADS  Google Scholar 

  9. I.V. Gorelov, J. Phys. Conf. Ser. 69, 012009 (2007)

    Article  ADS  Google Scholar 

  10. EMC Collaboration (J. Ashman et al.), Phys. Lett. B 206, 364 (1988)

    Article  ADS  Google Scholar 

  11. SMC Collaboration (B. Adeva et al.), Phys. Rev. D 58, 112001 (1998)

    Article  Google Scholar 

  12. X. Song, V. Gupta, Phys. Rev. D. 49, 2211 (1994)

    Article  ADS  Google Scholar 

  13. H. Dahiya, M. Gupta, Phys. Rev. D 67, 114015 (2003)

    Article  ADS  Google Scholar 

  14. M.D. Slaughter, Phys. Rev. C 82, 015208 (2010)

    Article  ADS  Google Scholar 

  15. M.D. Slaughter, Phys. Rev. D 84, 071303 (2011)

    Article  ADS  Google Scholar 

  16. J. Linde, T. Ohlsson, H. Snellman, Phys. Rev. D 57, 452 (1998)

    Article  ADS  Google Scholar 

  17. J. Linde, T. Ohlsson, H. Snellman, Phys. Rev. D 57, 5916 (1998)

    Article  ADS  Google Scholar 

  18. I.S. Sogami, Oh’yamaguchi, Phys. Rev. Lett. 54, 2295 (1985)

    Article  ADS  Google Scholar 

  19. B.S. Bains, R.C. Verma, Phys. Rev. D 66, 114008 (2002)

    Article  ADS  Google Scholar 

  20. F. Schlumpf, Phys. Rev. D 48, 4478 (1993)

    Article  ADS  Google Scholar 

  21. G. Ramalho, K. Tsushima, F. Gross, Phys. Rev. D 80, 033004 (2009)

    Article  ADS  Google Scholar 

  22. P. Ha, Phys. Rev. D 58, 113003 (1998)

    Article  ADS  Google Scholar 

  23. C.S. An, Q.B. Li, D.O. Riska, B.S. Zou, Phys. Rev. C 74, 055205 (2006)

    Article  ADS  Google Scholar 

  24. B.S. Bains, R.C. Verma, Phys. Rev. D 66, 114008 (2002)

    Article  ADS  Google Scholar 

  25. R. Dhir, R.C. Verma, Eur. Phys. J. A 42, 243 (2009)

    Article  ADS  Google Scholar 

  26. T.M. Aliev, A. Ozpineci, M. Savci, Phys. Rev. D 62, 053012 (2000)

    Article  ADS  Google Scholar 

  27. F.X. Lee, Phys. Rev. D 57, 1801 (1998)

    Article  ADS  Google Scholar 

  28. S.L. Zhu, W.Y.P. Hwang, Z.S.P. Yang, Phys. Rev. D 57, 1527 (1998)

    Article  ADS  Google Scholar 

  29. A. Iqubal, M. Dey, J. Dey, Phys. Lett. B 477, 125 (2000)

    Article  ADS  Google Scholar 

  30. B. Schwesinger, H. Weigel, Nucl. Phys. A 540, 461 (1992)

    Article  ADS  Google Scholar 

  31. Y. Oh, Phys. Rev. D 75, 074002 (2007)

    Article  ADS  Google Scholar 

  32. T. Ledwig, A. Silva, M. Vanderhaeghen, Phys. Rev. D 79, 094025 (2009)

    Article  ADS  Google Scholar 

  33. H-C. Kim, M. Praszalowicz, K. Goeke, Phys. Rev. D 57, 2859 (1998)

    Article  ADS  Google Scholar 

  34. G.S. Yang, H-C. Kim, M. Praszalowicz, K. Goeke, Phys. Rev. D 70, 114002 (2004)

    Article  ADS  Google Scholar 

  35. R. Flores-Mendieta, Phys. Rev. D 80, 094014 (2009)

    Article  ADS  Google Scholar 

  36. L.S. Geng, J.M. Camalich, M.J.V. Vacas, Phys. Rev. D. 80, 034027 (2009)

    Article  ADS  Google Scholar 

  37. S. Boinepalli, D.B. Leinweber, P.J. Moran, A.G. Williams, J.M. Zanotti, J.B. Zhang, Phys. Rev. D 80, 054505 (2009)

    Article  ADS  Google Scholar 

  38. C. Aubin, K. Orginos, V. Pascalutsa, M. Vanderhaeghen, Phys. Rev. D 79, 051502 (2009)

    Article  ADS  Google Scholar 

  39. CSSMand QCDSF/UKQCD Collaborations (P.E. Shanahan et al.), Phys. Rev. D 89, 074511 (2014)

    Article  ADS  Google Scholar 

  40. F.X. Lee, R. Kelly, L. Zhou, W. Wilcox, Phys. Lett. B 627, 71 (2005)

    Article  ADS  Google Scholar 

  41. A.O. Bazarko et al., Z. Phys. C 65, 189 (1995)

    Article  ADS  Google Scholar 

  42. HAPPEX Collaboration (A. Acha et al.), Phys. Rev. Lett. 98, 032301 (2007)

    Article  Google Scholar 

  43. S. Baunack et al., Phys. Rev. Lett. 102, 151803 (2009)

    Article  ADS  Google Scholar 

  44. G0 Collaboration (D. Androic et al.), Phys. Rev. Lett. 104, 012001 (2010)

    Article  ADS  Google Scholar 

  45. R. Bijker et al., Phys. Rev. C 85, 035204 (2012)

    Article  ADS  Google Scholar 

  46. J.F. Donoghue, E. Golowich, Phys. Rev. D 15, 3421 (1977)

    Article  ADS  Google Scholar 

  47. He Hanxin, Zhang Xizhen, Zhuo Yizhong, Chin. Phys. 4, 359 (1984)

    Google Scholar 

  48. E. Golowich, E. Haqq, G. Karl, Phys. Rev. D 2, 160 (1983)

    Article  ADS  Google Scholar 

  49. F.E. Close, Z. Li, Phys. Rev. D 42, 2194 (1990)

    Article  ADS  Google Scholar 

  50. F.E. Close, Rep. Prog. Phys. 51, 833 (1988)

    Article  ADS  Google Scholar 

  51. Z. Li, Phys. Rev. D 44, 2841 (1991)

    Article  ADS  Google Scholar 

  52. Y.J. Zhang, B. Zhang, B.Q. Ma, Phys. Lett. B 523, 260 (2001)

    Article  ADS  Google Scholar 

  53. Y.J. Zhang, B.Q. Ma, L. Yang, Int. J. Mod. Phys. A 18, 1465 (2003)

    Article  ADS  Google Scholar 

  54. Y.J. Zhang, Wei-Zhen Deng, B.Q. Ma, Phys. Rev. D 65, 114005 (2002)

    Article  ADS  Google Scholar 

  55. M. Batra, A. Upadhyay, Int. J. Mod. Phys. A 28, 1350062 (2013)

    Article  ADS  Google Scholar 

  56. J.P. Singh, A. Upadhyay, J. Phys. G, Nucl. Part. Phys. 30, 881 (2004)

    Article  ADS  Google Scholar 

  57. A. Upadhyay, M. Batra, Eur. Phys. J. A 49, 160 (2013)

    Article  ADS  Google Scholar 

  58. M. Batra et al., J. Phys. Conf. Ser. 481, 012024 (2014)

    Article  ADS  Google Scholar 

  59. S. Stein et al., Phys. Rev. D 12, 1884 (1975)

    Article  ADS  Google Scholar 

  60. E288 Collaboration (A.S. Ito et al.), Phys. Rev. D 23, 604 (1981)

    Article  Google Scholar 

  61. E.A. Hawker et al., Phys. Rev. Lett. 80, 3715 (1998)

    Article  ADS  Google Scholar 

  62. J.C. Peng et al., Phys. Rev. D 58, 092004 (1998)

    Article  ADS  Google Scholar 

  63. R.S. Towell et al., Phys. Rev. D 64, 052004 (2001)

    Article  ADS  Google Scholar 

  64. Y.J. Zhang, B. Zhang, B.Q. Ma, Phys. Lett. B 524, 260 (2001)

    Article  ADS  Google Scholar 

  65. S.T. Hong, Phys. Rev. D 76, 094029 (2007)

    Article  ADS  Google Scholar 

  66. S.T. Hong, G.E. Brown, Nucl. Phys. A 580, 408 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanpreet Kaur.

Additional information

Communicated by Shi-Lin Zhu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, A., Upadhyay, A. Magnetic moments of JP = \( {\frac{{3}}{{2}}}\) + decuplet baryons using the statistical model. Eur. Phys. J. A 52, 105 (2016). https://doi.org/10.1140/epja/i2016-16105-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16105-3

Keywords

Navigation