Skip to main content
Log in

Symmetry energy extracted from fragments in relativistic energy heavy-ion collisions induced by 124,136Xe

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In the framework of a modified Fisher model, the ratio of the symmetry-energy coefficient to temperature (a sym /T) is extracted from the fragment produced in the 124, 136Xe induced reactions using the isobaric yield ratio methods based on different approximations. It is found that for nuclei with the same neutron excess (INZ) increases when the mass of the fragment increases, while for isobar a sym /T decreases when I increases. It is also found that the extracted a sym /T of the nucleus has very little dependence on the n/p ratio of the projectile, target, and the incident energies in the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.-A. Li et al., Phys. Rep. 464, 113 (2008).

    Article  ADS  Google Scholar 

  2. J.M. Lattimer, M. Prakash, Phys. Rep. 333, 121 (2000).

    Article  ADS  Google Scholar 

  3. J.M. Lattimer, M. Prakash, Astrophys. J. 550, 426 (2001).

    Article  ADS  Google Scholar 

  4. J.M. Lattimer, M. Prakash, Science 304, 536 (2004).

    Article  ADS  Google Scholar 

  5. P. Danielewicz et al., Science 298, 1592 (2002).

    Article  ADS  Google Scholar 

  6. V. Baran et al., Phys. Rep. 410, 335 (2005).

    Article  ADS  Google Scholar 

  7. A.W. Steiner et al., Phys. Rep. 411, 325 (2005).

    Article  ADS  Google Scholar 

  8. L.-W. Chen et al., Phys. Rev. C 72, 064309 (2005).

    Article  ADS  Google Scholar 

  9. J. Xu et al., Phys. Rev. C 77, 014302 (2008).

    Article  ADS  Google Scholar 

  10. M.B. Tsang et al., Phys. Rev. Lett. 86, 5023 (2001).

    Article  ADS  Google Scholar 

  11. M.B. Tsang et al., Phys. Rev. C 64, 041603(R) (2001).

    Article  ADS  Google Scholar 

  12. S. Kowalski et al., Phys. Rev. C 75, 014601 (2007).

    Article  ADS  Google Scholar 

  13. H.S. Xu et al., Phys. Rev. Lett. 85, 716 (2000).

    Article  ADS  Google Scholar 

  14. A. Ono et al., Phys. Rev. C 68, 051601(R) (2003).

    Article  ADS  Google Scholar 

  15. G.A. Souliotis et al., Phys. Rev. C 73, 024606 (2006).

    Article  ADS  Google Scholar 

  16. Ad.R. Raduta, F. Gulminelli, Phys. Rev. C 75, 024605 (2007).

    Article  ADS  Google Scholar 

  17. Y.G. Ma et al., Phys. Rev. C 71, 054606 (2005).

    Article  ADS  Google Scholar 

  18. Y.G. Ma et al., Phys. Lett. B 390, 41 (1997).

    Article  ADS  Google Scholar 

  19. Y.G. Ma et al., Phys. Rev. C 60, 024607 (1999).

    Article  ADS  Google Scholar 

  20. M.B. Tsang et al., Eur. Phys. J. A 30, 129 (2006).

    Article  ADS  Google Scholar 

  21. P. Zhou et al., Phys. Rev. C 84, 037605 (2011).

    Article  ADS  Google Scholar 

  22. D.Q. Fang et al., J. Phys. G: Nucl. Part. Phys. 34, 2173 (2007).

    Article  ADS  Google Scholar 

  23. R.W. Minich et al., Phys. Lett. B 118, 458 (1982).

    Article  ADS  Google Scholar 

  24. A.S. Hirsch et al., Nucl. Phys. A 418, 267c (1984).

    Article  ADS  Google Scholar 

  25. A.S. Hirsch et al., Phys. Rev. C 29, 508 (1984).

    Article  ADS  Google Scholar 

  26. M. Huang et al., Phys. Rev. C 81, 044620 (2010).

    Article  ADS  Google Scholar 

  27. C.-W. Ma et al., Phys. Rev. C 83, 064620 (2011).

    Article  ADS  Google Scholar 

  28. D. Henzlova et al., Phys. Rev. C 78, 044616 (2008).

    Article  ADS  Google Scholar 

  29. P. Napolitani et al., Phys. Rev. C 76, 064609 (2007).

    Article  ADS  Google Scholar 

  30. A. Bonasera et al., Phys. Rev. Lett. 101, 122702 (2008).

    Article  ADS  Google Scholar 

  31. M.E. Fisher, Rep. Prog. Phys. 30, 615 (1967).

    Article  ADS  Google Scholar 

  32. C.F. von Weizsäcker, Z. Phys. 96, 431 (1935).

    Article  ADS  MATH  Google Scholar 

  33. H.A. Bethe, R.F. Bacher, Rev. Mod. Phys. 8, 82 (1936).

    Article  ADS  Google Scholar 

  34. P. Danielewicz, J. Lee, Nucl. Phys. A 818, 36 (2009).

    Article  ADS  Google Scholar 

  35. S.J. Lee, A.Z. Mekjian, Phys. Rev. C 82, 064319 (2010).

    Article  ADS  Google Scholar 

  36. H. Jiang et al., Phys. Rev. C 85, 024301 (2012) and references therein.

    Article  ADS  Google Scholar 

  37. A.E.S. Green, D.F. Edwards, Phys. Rev. 91, 46 (1953).

    Article  ADS  MATH  Google Scholar 

  38. C.W. Ma et al., Phys. Rev. C 79, 034606 (2009).

    Article  ADS  Google Scholar 

  39. C.W. Ma, S.S. Wang, Chin. Phys. C 35, 1017 (2011).

    Article  ADS  Google Scholar 

  40. C. W. Ma et al., Chin. Phys. B 18, 4781 (2009).

    Article  ADS  Google Scholar 

  41. C.W. Ma et al., J. Phys. G: Nucl. Part. Phys. 37, 015104 (2010).

    Article  ADS  Google Scholar 

  42. D.Q. Fang et al., Phys. Rev. C 61, 044610 (2000).

    Article  ADS  Google Scholar 

  43. G. Audi et al., Nucl. Phys. A 729, 337 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Wang Ma.

Additional information

Communicated by B. Ananthanarayan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, CW., Pu, J., Wei, HL. et al. Symmetry energy extracted from fragments in relativistic energy heavy-ion collisions induced by 124,136Xe. Eur. Phys. J. A 48, 78 (2012). https://doi.org/10.1140/epja/i2012-12078-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2012-12078-5

Keywords

Navigation