Skip to main content
Log in

Matrix formalism and singular-value decomposition for the location of gamma interactions in segmented HPGe detectors

  • Special Article - Tools for Experiment and Theory
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Modern coaxial and planar HPGe detectors allow a precise determination of the energies and trajectories of the impinging gamma-rays. This entails the location of the gamma interactions inside the crystal from the shape of the delivered signals. This paper reviews the state of the art of the analysis of the HPGe response function and proposes methods that lead to optimum signal decomposition. The generic matrix method allows fast location of the interactions even when the induced signals strongly overlap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Simpson, J. Phys. G: Nucl. Part. Phys. 31, S1801 (2005) doi:10.1088/0954-3899/31/10/076.

  2. I.Y. Lee, M.A. Deleplanque, K. Vetter, Rep. Prog. Phys. 66, 1095 (2003) doi:10.1088/0034-4885/66/7/201.

    Google Scholar 

  3. K. Vetter, Annu. Rev. Nucl. Part. Sci. 57, 363 (2007) doi:10.1146/annurev.nucl.56.080805.140525.

  4. B. Abbott, Phys. Rev. D 72, 062001 (2005) doi:10.1103/PhysRevLett.95.221101.

  5. G. Martinet, Phys. Rev. Lett. 93, 063401 (2004) doi:10.1103/PhysRevLett.93.063401.

  6. H. Hamrita, Nucl. Instrum. Methods A 531, 607 (2004) doi:10.1016/j.nima.2004.05.112.

  7. M. Chabot, Nucl. Instrum. Methods B 197, 155 (2002) doi:10.1016/j.nima.2004.05.112.

  8. A. Khaplanov, J. Pettersson, B. Cederwall, Nucl. Instrum. Methods A 580, 1075 (2007) doi:10.1016/j.nima. 2007.06.065.

  9. S. Tashenov, J. Gerl, Nucl. Instrum. Methods A 586, 224 (2008) doi:10.1016/j.nima.2007.11.057.

  10. G.J. Schmid, M.A. Deleplanque, I.Y. Lee, F.S. Stephens, K. Vetter, R.M. Clark, R.M. Diamond, P. Fallon, A.O. Macchiavelli, R.W. MacLeod, Nucl. Instrum. Methods A 430, 69 (1999) doi:10.1016/S0168-9002(99)00188-6.

  11. J. van der Marel, B. Cederwall, Nucl. Instrum. Methods A 437, 538 (1999) doi:10.1016/S0168-9002(99)00801-3.

  12. A. Lopez-Martens, K. Hauschild, A. Korichi, J. Roccaz, J.-P. Thibaud, Nucl. Instrum. Methods A 533, 454 (2004) doi:10.1016/j.nima.2004.06.154.

  13. P. Medina, C. Santos, D. Villaume, Instrumentation and Measurement Technology Conference, 2004, IMTC 04, Proceedings of the 21st IEEE, IEEE Conf. Proc. 3, 1828 (2004) doi:10.1109/IMTC.2004.1351438.

  14. A.J. Boston, Nucl. Instrum. Methods B 261, 1098 (2007) doi:10.1016/j.nimb.2007.04.305.

  15. F.C.L. Crespi, F. Camera, B. Million, M. Sassi, O. Wieland, A. Bracco, Nucl. Instrum. Methods A 593, 440 (2007) doi:10.1016/j.nima.2008.05.057.

  16. P.R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, Inc., New York, 1969).

  17. R. Venturelli, D. Bazzacco, LNL-INFN Report no. 204, 220 (2005).

  18. A. Olariu, IEEE Trans. Nucl. Sci. 53, 1028 (2006) doi:10.1109/TNS.2006.875130.

    Google Scholar 

  19. I. Doxas, C. Nieter, D.C. Radford, K. Lagergren, J.R. Cary, Nucl. Instrum. Methods A 580, 1331 (2007) doi:10.1016/j.nima.2007.06.079.

  20. A. Khaplanov, B. Cederwall, S. Tashenov, Nucl. Instrum. Methods A 592, 325 (2008) doi:10.1016/j.nima. 2008.03.111.

  21. J. Gerl, Nucl. Phys. A 752, 688 (2005) doi:10.1016/ j.nuclphysa.2005.02.068.

  22. Th. Kröll, D. Bazzacco, Nucl. Instrum. Methods A 565, 691 (2006) doi:10.1016/j.nima.2006.06.036.

  23. M. Schlarb, Simulation and Real-Time Analysis of Pulse Shapes from HPGe Detectors, PhD Thesis, TUM, München (2008).

  24. P. Désesquelles, T.M.H. Ha, A. Korichi, F. Le Blanc, C.M. Petrache, Nucl. Instrum. Methods B 267, 542 (2009) doi:10.1016/j.nimb.2008.11.042.

  25. P. Désesquelles, T.M.H. Ha, A. Korichi, F. Le Blanc, C.M. Petrache, Kolmogorov-Smirnov method for the determination of signal time-shifts, this issue.

  26. B. Bruyneel, Nucl. Instrum. Methods A 599, 196 (2009) doi:10.1016/j.nima.2008.11.011.

  27. P. Désesquelles, J.P. Bondorf, I.N. Mishustin, A.S. Botvina, Nucl. Phys. A 604, 183 (1996) doi:10.1016/0375-9474(96)00126-1.

  28. R.J. Hanson, C.L. Lawson, Solving Least Square Problems (SIAM, Philadelphia, PA, 1995).

  29. P. Désesquelles, T.M.H. Ha, A. Korichi, F. Le Blanc, C.M. Petrache, J. Phys. G: Nucl. Part. Phys. 36, 037001 (2009) doi:10.1088/0954-3899/36/3/037001.

  30. B.F. Farrell, P.J. Ioannou, J. Atmos. Sci. 56, 3622 (1999) doi:10.1175/1520-0469(1999)056.

    Google Scholar 

  31. P. Désesquelles, Ann. Phys. (Paris) 20, 1 (1995) (in English) doi:10.1051/anphys:199501001.

  32. P. Désesquelles, Phys. Rev. C 62, 024614 (2000) doi:10.1103/PhysRevC.62.024614.

  33. O. Alter, P.O. Brown, D. Botstein, Proc. Natl. Acad. Sci. U.S.A. 97, 10101 (2000).

    Google Scholar 

  34. F.C.L. Crespi, F. Camera, O. Wieland, G. Benzoni, S. Brambilla, B. Million, D. Montanari, Nucl. Instrum. Methods A 570, 459 (2007) doi:10.1016/j.nima.2006.10.003.

Download references

Author information

Authors and Affiliations

Authors

Additional information

N. Alamanos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Désesquelles, P., Ha, T.M.H., Hauschild, K. et al. Matrix formalism and singular-value decomposition for the location of gamma interactions in segmented HPGe detectors. Eur. Phys. J. A 40, 237–248 (2009). https://doi.org/10.1140/epja/i2008-10749-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2008-10749-4

PACS

Navigation