Skip to main content
Log in

Anisotropic Brownian motion in ordered phases of DNA fragments

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Using Fluorescence Recovery After Photobleaching, we investigate the Brownian motion of DNA rod-like fragments in two distinct anisotropic phases with a local nematic symmetry. The height of the measurement volume ensures the averaging of the anisotropy of the in-plane diffusive motion parallel or perpendicular to the local nematic director in aligned domains. Still, as shown in using a model specifically designed to handle such a situation and predicting a non-Gaussian shape for the bleached spot as fluorescence recovery proceeds, the two distinct diffusion coefficients of the DNA particles can be retrieved from data analysis. In the first system investigated (a ternary DNA-lipid lamellar complex), the magnitude and anisotropy of the diffusion coefficient of the DNA fragments confined by the lipid bilayers are obtained for the first time. In the second, binary DNA-solvent system, the magnitude of the diffusion coefficient is found to decrease markedly as DNA concentration is increased from isotropic to cholesteric phase. In addition, the diffusion coefficient anisotropy measured within cholesteric domains in the phase coexistence region increases with concentration, and eventually reaches a high value in the cholesteric phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Broersma, J. Chem. Phys. 32, 1632 (1960).

    Article  ADS  Google Scholar 

  2. M.M. Tirado, J.G. de la Torre, J. Chem. Phys. 71, 2581 (1979).

    Article  ADS  Google Scholar 

  3. M.M. Tirado, C.L. Martinez, J.G. de La Torre, J. Chem. Phys. 81, 2047 (1984).

    Article  ADS  Google Scholar 

  4. B.A. Scalettar, J.E. Hearst, M. P. Klein, Macromolecules 22, 4550 (1989).

    Article  ADS  Google Scholar 

  5. L. Wang, M.M. Garner, Hyuk Yu, Macromolecules 24, 2368 (1991).

    Article  ADS  Google Scholar 

  6. T. Nicolai, M. Mandel, Macromolecules 22, 2348 (1989).

    Article  ADS  Google Scholar 

  7. M.P.B. van Bruggen, H.N.W. Lekkerkerker, J.K.G. Dhont, Phys. Rev. E 56, 4394 (1997).

    Article  ADS  Google Scholar 

  8. J.K. Phalakornkul, A.P. Gast, R. Pecora, Macromolecules 32, 3122 (1999).

    Article  ADS  Google Scholar 

  9. S.A. Tatarkova, D.A. Berk, Phys. Rev. E 71, 041913 (2005).

    Article  ADS  Google Scholar 

  10. T. Odijk, Macromolecules 19, 2073 (1986).

    Article  ADS  Google Scholar 

  11. I. Teraoka, R. Hayakawa, J. Chem. Phys. 89, 6989 (1988).

    Article  ADS  Google Scholar 

  12. T. Sato, A. Teramoto, Macromolecules 24, 193 (1991).

    Article  ADS  Google Scholar 

  13. S. Szamel, Phys. Rev. Lett. 70, 3744 (1993).

    Article  ADS  Google Scholar 

  14. H. Löwen, Phys. Rev. E 50, 1232 (1994).

    Article  ADS  Google Scholar 

  15. J.K.G. Dhont, M.P.B. van Bruggen, W.J. Briels, Macromolecules 32, 3809 (1999).

    Article  ADS  Google Scholar 

  16. M.P.B. van Bruggen, H.N.W. Lekkerkerker, G. Maret, J.K.G. Dhont, Phys. Rev. E 58, 7668 (1998).

    Article  ADS  Google Scholar 

  17. S.V. Divinskikh, I. Furó, J. Chem. Phys. 115, 1946 (2001).

    Article  ADS  Google Scholar 

  18. S.V. Divinskikh, I. Furó, H. Zimmermann, A. Maliniak, Phys. Rev. E 65, 061701 (2002).

    Article  ADS  Google Scholar 

  19. M.P. Lettinga, E. Barry, Z. Dogic, Europhys. Lett. 71, 692 (2005).

    Article  ADS  Google Scholar 

  20. Y. Han, A.M. Alsayed, M. Nobili, J. Zhang, T.C. Lubensky, A.G. Yodh, Science 314, 626 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. M.P. Lettinga, J.K.G. Dhont, Z. Zhang, S. Messlinger, G. Gompper, Soft Matter 6, 4556 (2010).

    Article  ADS  Google Scholar 

  22. C.K. Yun, A.G. Fredricksen, Mol. Cryst. Liq. Cryst. 12, 73 (1970).

    Article  Google Scholar 

  23. K. Otnes, R. Pynn, J.A. Janik, J.M. Janik, Phys. Lett. A 38, 335 (1972).

    Article  ADS  Google Scholar 

  24. K.-S Chu, D.S. Moroi, J. Phys. (Paris) 36, C199 (1975).

    Article  Google Scholar 

  25. M. Allen, Phys. Rev. Lett. 65, 2881 (1990).

    Article  ADS  Google Scholar 

  26. Z. Zhang, H. Guo, J. Chem. Phys. 133, 144911 (2010).

    Article  ADS  Google Scholar 

  27. H. Maeda, Y. Maeda, Nano Lett. 7, 3329 (2007).

    Article  ADS  Google Scholar 

  28. D. Mukhija, M.J. Solomon, J. Colloid Interface Sci. 314, 98 (2007).

    Article  Google Scholar 

  29. J. Mathé, J.-M. Di Meglio, B. Tinland, J. Colloid Interface Sci. 322, 315 (2008).

    Article  Google Scholar 

  30. H. Uemura, M. Ichikawa, Y. Kimura, Phys. Rev. E 81, 051801 (2010).

    Article  ADS  Google Scholar 

  31. Y. Gambin, G. Massiera, L. Ramos, C. Ligoure, W. Urbach, Phys. Rev. Lett. 94, 110602 (2005).

    Article  ADS  Google Scholar 

  32. S. Seiffert, W. Oppermann, J. Microsc. 220, 20 (2005).

    Article  MathSciNet  Google Scholar 

  33. P. Moreau, D. van Effenterre, L. Navailles, F. Nallet, D. Roux, Eur. Phys. J. E 26, 225 (2008).

    Article  Google Scholar 

  34. F. Lanni, B.R. Ware, Rev. Sci. Instrum. 53, 905 (1982).

    Article  ADS  Google Scholar 

  35. T.E. Strzelecka, R.L. Rill, Macromolecules 24, 5124 (1991).

    Article  ADS  Google Scholar 

  36. F. Livolant, A. Leforestier, Prog. Polym. Sci. 21, 1115 (1996).

    Article  Google Scholar 

  37. T. Pott, A. Colin, L. Navailles, D. Roux, Interface Sci. 11, 249 (2003).

    Article  Google Scholar 

  38. E. Andreoli de Oliveira, E.R. Teixeira da Silva, A. Février, É. Grelet, F. Nallet, L. Navailles, EPL 91, 28001 (2010).

    Article  ADS  Google Scholar 

  39. E.R. Teixeira da Silva, E. Andreoli de Oliveira, A. Février, F. Nallet, L. Navailles, Eur. Phys. J. E 34, 83 (2011).

    Article  Google Scholar 

  40. D.H. Van Winkle, M.W. Davidson, W.X. Chen, R.L. Rill, Macromolecules 23, 4140 (1990).

    Article  ADS  Google Scholar 

  41. P.C. Martin, O. Parodi, P.S. Pershan, Phys. Rev. A 6, 2401 (1972).

    Article  ADS  Google Scholar 

  42. D. Axelrod, D.E. Koppel, J. Schlessinger, E. Elson, W.W. Webb, Biophys. J. 16, 1055 (1976).

    Article  ADS  Google Scholar 

  43. G.I. Hauser, S. Seiffert, W. Oppermann, J. Microsc. 230, 353 (2008).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Nallet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobrindt, J., Rodrigo Teixeira da Silva, E., Alves, C. et al. Anisotropic Brownian motion in ordered phases of DNA fragments. Eur. Phys. J. E 35, 3 (2012). https://doi.org/10.1140/epje/i2012-12003-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12003-4

Keywords

Navigation