Skip to main content
Log in

Nonlinear pulsational eigenmodes of a planar collisional dust molecular cloud with grain-charge fluctuation

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We try to present a theoretical evolutionary model leading to the excitations of nonlinear pulsational eigenmodes in a planar (1D) collisional dust molecular cloud (DMC) on the Jeans scale. The basis of the adopted model is the Jeans assumption of self-gravitating homogeneous uniform medium for simplification. It is a self-gravitating multi-fluid consisting of the Boltzmann distributed warm electrons and ions, and the inertial cold dust grains with partial ionization. Dust-charge fluctuations, convections and all the possible collisions are included. The grain-charge behaves as a dynamical variable owing mainly to the attachment of the electrons and ions to the grain-surfaces randomly. The adopted technique is centered around a mathematical model based on new solitary spectral patterns within the hydrodynamic framework. The collective dynamics of the patterns is governed by driven Korteweg-de Vries (d-KdV) and Korteweg-de Vries (KdV) equations obtained by a standard multiscale analysis. Then, simplified analytical and numerical solutions are presented. The grain-charge fluctuation and collision processes play a key role in the DMC stability. The sensitive dependence of the eigenmode amplitudes on diverse relevant plasma parameters is discussed. The significance of the main results in astrophysical, laboratory and space environments are concisely summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.H. Shu, F.C. Adams, S. Lizano, Ann. Rev. Astron. Astrophys. 25, 23 (1987)

    Article  ADS  Google Scholar 

  2. R.B. Larson, Rep. Prog. Phys. 66, 1651 (2003)

    Article  ADS  Google Scholar 

  3. R.S. Klessen, M.R. Krumholz, F. Heitsch, Adv. Sci. Lett. 4, 258 (2011)

    Article  Google Scholar 

  4. B.T. Draine, E.E. Salpeter, Astrophys. J. 231, 77 (1979)

    Article  ADS  Google Scholar 

  5. F. Verheest, Space Sci. Rev. 77, 267 (1996)

    Article  ADS  Google Scholar 

  6. F. Verheest, P.K. Shukla, Phys. Scr. 55, 83 (1997)

    Article  ADS  Google Scholar 

  7. T. Cattaert, F. Verheest, Astron. Astrophys. 438, 23 (2005)

    Article  ADS  Google Scholar 

  8. P.K. Karmakar, Pramana J. Phys. 76, 945 (2011)

    Article  ADS  Google Scholar 

  9. P.K. Karmakar, B. Borah, Phys. Scr. 86, 1 (2012)

    Article  Google Scholar 

  10. C.B. Dwivedi, A.K. Sen, S. Bujarbarua, Astron. Astrophys. 345, 1049 (1999)

    ADS  Google Scholar 

  11. B.P. Pandey, J. Vranjes, S. Poedts, P.K. Shukla, Phys. Scr. 65, 513 (2002)

    Article  ADS  Google Scholar 

  12. F. Verheest, V.M. Cadez, Phys. Rev. E 66, 056404 (2002)

    Article  ADS  Google Scholar 

  13. J. Vranjes, B.P. Pandey, S. Poedts, Phys. Rev. E 64, 066404 (2001)

    Article  ADS  Google Scholar 

  14. A.A. Mamun, P.K. Shukla, IEEE Trans. Plasma Sci. 30, 720 (2002)

    Article  ADS  Google Scholar 

  15. U. de Angelis, Phys. Scr. 45, 465 (1992)

    Article  ADS  Google Scholar 

  16. A.A. Mamun, P.K. Shukla, Phys. Scr. T98, 107 (2002)

    Article  ADS  Google Scholar 

  17. C. Cui, J. Goree, IEEE Trans. Plasma Sci. 22, 151 (1994)

    Article  ADS  Google Scholar 

  18. P.K. Shukla, B. Eliasson, Rev. Mod. Phys. 81, 25 (2009)

    Article  ADS  Google Scholar 

  19. A. Piel, A. Melzer, Plasma Phys. Control. Fusion 44, R1 (2002)

    Article  ADS  Google Scholar 

  20. F. Verheest, Phys. Scr. T63, 99 (1996)

    Article  ADS  Google Scholar 

  21. S. Burman, A. Roy Chowdhury, Chaos Sol. Fract. 13, 973 (2002)

    Article  MATH  ADS  Google Scholar 

  22. V.E. Fortov, A.V. Ivlev, S.A. Khrapak, A.G. Khrapak, G.E. Morfill, Phys. Rep. 421, 1 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  23. A.V. Ivlev, A. Lazarian, V.N. Tsytovich, U. de Angelis, T. Hoang, G.E. Morfill, Astrophys. J. 723, 612 (2010)

    Article  ADS  Google Scholar 

  24. R.M. Crutcher, Ann. Rev. Astron. Astrophys. 50, 29 (2012)

    Article  ADS  Google Scholar 

  25. P.K. Karmakar, Res. Phys. 2, 77 (2012)

    Google Scholar 

  26. Guo Zhi-Rong, Yang Zeng-Quiang, Yin Bao-Xiang, Sun Mao-Zhu, Chin. Phys. B 19, 115203 (2010)

    Article  ADS  Google Scholar 

  27. B.P. Pandey, J. Vranjes, S.V. Vladimirov, Phys. Plasmas 19, 093701 (2012)

    Article  ADS  Google Scholar 

  28. G. Jacobs, V.V. Yaroshenko, F. Verheest, Phys. Rev. E 66, 026407 (2002)

    Article  ADS  Google Scholar 

  29. A.V. Volosevich, C.-V. Meister, Contrib. Plasma Phys. 42, 61 (2002)

    Article  ADS  Google Scholar 

  30. S.I. Popel, T.V. Losseva, A.P. Golub, R.L. Merlino, S.N. Andreev, Contrib. Plasma Phys. 45, 461 (2005)

    Article  ADS  Google Scholar 

  31. J.E. Thomas, Contrib. Plasma Phys. 49, 316 (2009)

    Article  ADS  Google Scholar 

  32. J. Vranjes, Astrophys. Space Sci. 213, 139 (1994)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Karmakar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karmakar, P.K., Borah, B. Nonlinear pulsational eigenmodes of a planar collisional dust molecular cloud with grain-charge fluctuation. Eur. Phys. J. D 67, 187 (2013). https://doi.org/10.1140/epjd/e2013-40165-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40165-7

Keywords

Navigation