Skip to main content
Log in

Adsorption of hydrogen on normal and pentaheptite single wall carbon nanotubes

  • Quantum Dots, Wires and Nanotubes
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

Density functional calculations of the physisorption of molecular hydrogen and the dissociative atomic chemisorption on the external surface of hexagonal and pentaheptite carbon nanotubes, have been carried out. Physisorption binding energies are near 100 meV/molecule and are similar on metallic and semiconducting nanotubes. Full coverage of the nanotube with one molecule per graphitic hexagon decreases the binding energy per molecule. Chemisorption binding energies per H atom are larger on pentaheptites than on hexagonal carbon nanotubes. The molecular physisorption and dissociative chemisorption states on pentaheptites have very similar total energies (some chemisorbed states are even slightly more stable than the physisorbed states), while on hexagonal carbon nanotubes molecular physisorption is more stable than dissociative chemisorption. However, a substantial energy barrier has to be overcome to go from physisorption to dissociative chemisorption in both types of nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Züttel, Mat. Today 9, 24 (2003)

    Google Scholar 

  • S. Orimo, A. Züttel, L. Schlapbach, G. Majer, T. Fukunaga, H. Fujii, J. Appl. Cryst. 356, 716 (2003)

    Google Scholar 

  • C.M. Brown, T. Yildirim, D.A. Newmann, M.J. Heben, T. Gennett, A.C. Dillon, J.L. Alleman, J.E. Fischer, Chem. Phys. Lett. 329, 311 (2000)

    Google Scholar 

  • B.K. Pradhan, G.U. Sumanasekera, K.W. Adu, H.E. Romero, K.A. Williams, P.C. Eklund, Physica B 323, 115 (2002)

    Google Scholar 

  • D.G. Narehood, J.V. Pearce, P.C. Eklund, P.E. Sokol, R.E. Lechner, J. Pieper, J.R.D. Copley, J.C. Cook, Phys. Rev. B 67, 205409 (2003)

    Google Scholar 

  • J.S. Arellano, L.M. Molina, A. Rubio, M.J. López, J.A. Alonso, J. Chem. Phys. 117, 2281 (2002)

    Google Scholar 

  • J. Zhao, A. Buldum, J. Han, J.P. Lu, Nanotechnology 13, 195 (2002)

    Google Scholar 

  • J. Li, T. Furuta, H. Goto, T. Ohashi, Y. Fujiwara, S. Yip, J. Chem. Phys. 119, 2376 (2003)

    Google Scholar 

  • E.J. Duplock, M. Scheffler, J.D. Lindan, Phys. Rev. Lett. 92, 225502 (2004)

    Google Scholar 

  • V.H. Crespi, L.X. Benedict, M.L. Cohen, S.G. Louie, Phys. Rev. B 53, R13303 (1996)

  • J.W. Mintmire, C.T. White, in Carbon Nanotubes: Preparation and Properties, edited by T.W. Ebbesen (CRC, Boca Raton, 1997), p. 191

  • B. Hammer, L.B. Hansen, J.N. Nørskov, Phys. Rev. B 59, 7413 (1999)

    Google Scholar 

  • Y. Okamoto, Y. Miyamoto, J. Phys. Chem. B 105, 3470 (2001)

    Google Scholar 

  • J.S. Arellano, L.M. Molina, A. Rubio, J.A. Alonso, J. Chem. Phys. 112, 8114 (2000)

    Google Scholar 

  • P. Diep, J.K. Johnson, J. Chem. Phys. 112, 4465 (2000)

    Google Scholar 

  • V. Barone, J. Heyd, G.E. Scuseria, J. Chem. Phys. 120, 7169 (2004)

    Google Scholar 

  • E.-C. Lee, Y.-S. Kim, Y.-G. Jin, K.J. Chang, Phys. Rev. B 66, 73415 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabria, I., López, M. & Alonso, J. Adsorption of hydrogen on normal and pentaheptite single wall carbon nanotubes. Eur. Phys. J. D 34, 279–282 (2005). https://doi.org/10.1140/epjd/e2005-00158-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2005-00158-9

Keywords

Navigation