Skip to main content
Log in

In Vitro Culture of Autonomous Embryos as a Model System for the Study of Plant Stress Tolerance to Abiotic Factors (on the Example of Cereals)

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

One approach to the experimental evaluation of plant tolerance to abiotic stress-factors that can be performed under in vitro culture conditions is based on zygotic embryos used at a particular developmental stage embryo culture in vitro) as explants. The cultivation of immature embryos at-the critical stage of their relative autonomy is especially promising in this respect. Such embryos can themselves, independently of physiological factors of the maternal organism, give rise to full-fledged plants under adequate conditions in vitro and then ex vitro. This makes possible to bypass another stage of morphogenic callus formation and directly derive regenerants. This paper reviews the literature and the authors’ data dealing with the identification of the stage of relative autonomy of cereal embryogenesis in vivo. The use of the relatively autonomous embryos in the assessment of drought tolerance under selective conditions in vitro is also discussed. It is emphasized that the embryo culture in vitro, as a model system for evaluation of plant stress tolerance, is promising, because the embryo has all of the morphogenetic potentials of an adult organism. Furthermore, the morphogenetic reactions of plants in vivo and explants/regenerants in vitro are similar according to the principle of universality of plant morphogenesis in natural and experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abdelnour-Esquivel, A., Perez, J., Rojas, M., et al., Use of gamma radiation to induce mutations in rice (Oryza sativa L.) and the selection of lines with tolerance to salinity and drought, In Vitro Cell. Dev. Biol.: Plant, 2020, vol. 56, pp. 88–97. https://doi.org/10.1007/s11627-019-10015-5

    Article  CAS  Google Scholar 

  2. Abdolshahi, R., Nazari, M., Safarian, A., et al., Integrated selection criteria for drought tolerance in wheat (Triticum aestivum L.) breeding programs using discriminant analysis, Field Crops Res., 2015, vol. 174, pp. 20–29.

    Google Scholar 

  3. Alabushev, A.V., Ionova, E.V., Likhovidova, V.A., et al., Estimation of drought tolerance of winter soft wheat in conditions of modeled drought, Zemledelie, 2019, no. 7, pp. 35–37.

  4. Alhasnawi, A.N., Zain, Ch.R., Kadhimi, A.A., et al., Accumulation of antioxidants in rice callus (Oryza sativa L.) induced by β-glucan and salt stress, Austral. J. Crop Sci., 2017, vol. 11, pp. 118–125.

    CAS  Google Scholar 

  5. Baillo, E.H., Kimotho, R.N., Zhang, Z., and Xu, P., Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement, Genes, 2019, vol. 10, no. 10, р. 771. https://doi.org/10.3390/genes10100771

  6. Baimagambetova, K. and Bulatova, K., Gradual assessment of varieties and lines of spring wheat for drought tolerance, Sel. Semenarstvo, 2013, vol. 19, no. 2, pp. 27–34.

    Google Scholar 

  7. Baranova, E.N., Chaban, I.A., Kononenko, N.V., et al., Morphofunctional characteristics of barley calli tolerant to the toxic effect of aluminum, Biol. Membr., 2015, vol. 32, no. 3, pp. 1–13.

    Google Scholar 

  8. Batygina, T.B., Khlebnoe zerno (Bread Grain), Leningrad: Nauka, 1987.

  9. Batygina, T.B., Biologiya razvitiya rastenii (Plant Developmental Biology), St. Petersburg: DEAN, 2014.

  10. Batygina, T.B. and Vasil’eva, V.E., System approach to differentiation of a embryo of angiosperms, Ontogenez, 1983, vol. 14, no. 3, pp. 304–311.

    Google Scholar 

  11. Batygina, T.B. and Vasil’eva, V.E., Applied aspects of embryology. Embryo autonomy and embryo culture of flowering plants, Bot. Zh., 1987a, vol. 72, no. 2, pp. 155–161.

    Google Scholar 

  12. Batygina, T.B. and Vasilyeva, V.E., Some aspects of embryo-culture (autonomy of embryo) of flowering plants, Phytomorphology, 1987b, vol. 37, pp. 283–288.

    Google Scholar 

  13. Batygina, T.B. and Vasilyeva, V.E., Some aspects of autonomy of embryo in flowering plants, Phytomorphology, 1988, vol. 38, pp. 293–297.

    Google Scholar 

  14. Bychkova, O.V., Evaluation of the effectiveness of morphogenesis and regeneration of spring durum wheat in vitro, Acta Biol. Sib., 2016, no. 2 (1), pp. 139–149.

  15. Bychkova, O.V. and Khlebova, L.P., Physiological assessment of drought resistance of spring durum wheat, Acta Biol. Sib., 2015, vol. 1, nos. 1–2, pp. 107–116.

    Google Scholar 

  16. Bychkova, O.V., Ereshchenko, D.V., and Rozova, M.A., Comparative assessment of the use of mature and immature embryos of spring durum wheat in culture, Acta Biol. Sib., 2016, vol. 2, no. 2, pp. 76–80.

    Google Scholar 

  17. Chaichi, M., Sanjarian, F., Razavi, K., and Gonzalez-Hernandez, J.L., Phenotypic diversity among Iranian bread wheat landraces, as a screening tool for drought tolerance, Acta Physiol. Plant., 2019, vol. 41, p. 90.

    Google Scholar 

  18. De Vries, S.C. and Weijers, D., Plant embryogenesis, Curr. Biol., 2017, vol. 27, pp. 870–873.

    Google Scholar 

  19. Dehghani, I., Mostajeran, A., Esmaeili, A., and Ghannadian, M., The role of DREB2 gene in drought tolerance of common wheat (Triticum aestivum L.) associated with Azospirillum brasilense, Appl. Ecol. Environ. Res., 2019, vol. 17, pp. 4883–4902.

    Google Scholar 

  20. Delporte, F., Pretova, A., Du Jardin, P., et al., Morpho-histology and genotype dependence of in vitro morphogenesis in mature embryo cultures of wheat, Protoplasma, 2014, vol. 251, pp. 1455–1470.

    PubMed  PubMed Central  Google Scholar 

  21. Demydov, O., Khomenko, S., Fedorenko, M., et al., Stability and plasticity of collection samples of durum spring wheat in the forest-steppe conditions of Ukraine, Am. J. Agric. For., 2021, vol. 9, pp. 83–88.

    Google Scholar 

  22. Dragavtsev, V.A., Increase of crop yields based on the theory of ecological and genetic organization of quantitative traits, Byull. Gl. Nauchn. Bot. Sada, 2019, no. 132, pp. 17–28.

  23. Dubrovnaya, O.V., Wheat breeding in vitro for resistance to abiotic stress factors, Fiziol. Rast. Genet., 2017, vol. 49, no. 4, pp. 279–292.

    Google Scholar 

  24. D’yachuk, T.I., Khomyakova, O.V., Stolyarova, S.V., et al., Cellular biotechnologies in creation of initial material for triticale breeding, Agrar. Vestn. Yugo-Vost., 2009, no. 2, pp. 9–10.

  25. Eid, M., Validation of SSR molecular markers linked to drought tolerant in some wheat cultivars, J. Plant Breed. Genet., 2018, vol. 6, pp. 95–109.

    Google Scholar 

  26. El-Mowafi, H.F., Al Kahtani, M.D.F., Abdallah, R.M., et al., Combining ability and gene action for yield characteristics in novel aromatic cytoplasmic male sterile hybrid rice under water-stress conditions, Agriculture, 2021, vol. 11, no. 3, р. 226. https://doi.org/10.3390/agriculture11030226

  27. Embryology of Flowering Plants: Terminology and Concepts, Vol. 3: Reproductive Systems, Batygina, T.B., Ed., Boca Raton, Fl: CRC Press, 2009.

    Google Scholar 

  28. Falaknaz, M., Aalami, A., Mehrabi, A.A., et al., Assessing Aegilops tauschii genotypes to drought stress using tolerance indices, Cereal Res., 2019, vol. 8, pp. 483–494.

    Google Scholar 

  29. Farshadfar, E., Jamshidi, B., Cheghamirza, K., et al., Evaluation of drought tolerance in bread wheat (Triticum aestivum L.) using in vivo and in vitro techniques, Ann. Biol. Res., 2012, vol. 3, pp. 465–476.

    Google Scholar 

  30. Freitas, W.C., Medina, P.F., Giomoto, G.S., and Almeida, J.A.S., PEG 6000 and sucrose in the control of the direct somatic embryogenesis capacity in Coffea arabica L., J. Global Biosci., 2020, vol. 9, pp. 7364–7376.

    Google Scholar 

  31. Gahlaut, V., Jaiswal, V., Kumar, A., et al., Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.), Theor. Appl. Genet., 2016, vol. 129, pp. 2019–2042.

  32. Ghorbel, M., Saibi, W., and Brini, F., Abiotic stress signaling in Brassicaceae plants, J. Soil Plant Biol., 2020, vol. 1, pp. 138–150.

  33. Gilbert, S.F., Developmental Biology, Mayers, R., Ed., 2018, 11th ed. https://www.pdfdrive.com/developmental-biology-e188565455.html.

    Google Scholar 

  34. Global’nye izmeneniya klimata i prognoz riskov v sel’skom khozyaistve Rossii (Global Climate Changes and Forecast of Risks for Russian Agriculture), Ivanov, A.L. and Kiryushin, V.I., Eds., Moscow: Rossel’khozakademiya, 2009.

    Google Scholar 

  35. Goleva, G.G., Batluk, Yu.A., Vashchenko, T.G., et al., Obtaining plants-regenerants of winter soft wheat (Triticum aestivum L.) in vitro, Vestn. Voronezh. Gos. Agrar. Univ., S-kh. Nauki, 2014, no. 3 (42), pp. 17–22.

  36. Grabovets, A.I. and Fomenko, M.A., Improvement of wheat breeding procedure in conditions of insufficient moisture, Zernovye Krupyanye Kul’t., 2016, no. 2 (18), pp. 48–53.

  37. Grzesiak, M.T., Hordynska, N., Maksymowicz, A., et al., Variation among spring wheat (Triticum aestivum L.) genotypes in response to the drought stress. II—Root system structure, Plants, 2019, vol. 8, no. 12, р. 584. https://doi.org/10.3390/plants8120584

  38. Gupta, S., Mishra, V.K., Kumari, S., et al., Deciphering genome-wide WRKY gene family of Triticum aestivum L. and their functional role in response to abiotic stress, Genes Genomics, 2019, vol. 41, pp. 79–94. https://doi.org/10.1007/s13258-018-0742-9

    Article  CAS  PubMed  Google Scholar 

  39. Ignatova, S.A., Kletochnye tekhnologii v rastenievodstve, genetike i selektsii vozdelyvaemykh rastenii: zadachi, vozmozhnosti, razrabotki sistem in vitro (Cell Technologies in Plant Cultivation, Genetics, and Selection of Crop Plants: Objectives, Opportunities, and Cultivation in Vitro), Odessa: Astroprint, 2011.

  40. Ikeuchi, M., Favero, D.S., Sakamoto, Y., et al., Molecular mechanisms of plant regeneration, Ann. Rev. Plant B-iol., 2019, vol. 70, pp. 377–406.

    CAS  Google Scholar 

  41. Inzhevatkin, E.V. and Savchenko, A.A., The nonspecific metabolic reaction of cells to extreme exposures, Biol. Bull. (Moscow), 2016, vol. 43, no. 1, pp. 2–11.

    CAS  Google Scholar 

  42. Jogawat, A., Yadav, B., Lakra, N., et al., Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: a review, Phy-siol. Plant., 2021, vol. 172, no. 2, pp. 1106–1132. https://doi.org/10.1111/ppl.13328

    Article  CAS  Google Scholar 

  43. Haslam, T.M. and Yeung, E.C., Zygotic embryo culture: an overview, in Plant Embryo Culture: Methods and Protocols, Methods Mol. Biol., vol. 710, Thorpe, T.A. and Yeung, E.C., Eds., Dordrecht: Springer-Verlag, 2011, ch. 1, pp. 3–16.

  44. Hess, J.R., Carman, J.G., and Banowetz, G.M., Hormones in wheat kernels during embryony, Plant Physio-l., 2002, vol. 159, pp. 379–386.

    CAS  Google Scholar 

  45. Hussain, A., Qarshi, I.A., Nazir, H., et al., Plant tissue culture: current status and opportunities, in Recent Advances in Plant in Vitro Culture, London: InTechOpen, 2012, pp. 1–21. https://doi.org/10.5772/50568

  46. Khuder, H.H. and AL-Taei, Yu.I.H., Effect of salt stress on some growth indicators and cellular components of wheat (Triticum aestivum L.) callus, Int. J. Appl. Agric. Sci., 2015, vol. 1, pp. 91–94.

    Google Scholar 

  47. Kimotho, R.N., Baillo, E.H., and Zhang, Z., Transcription factors involved in abiotic stress responses in maize (Zea mays L.) and their roles in enhanced productivity in the post genomics era, Peer J., 2019, vol. 7, p. e7211. https://doi.org/10.7717/peerj.7211

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kononenko, N., Baranova, E., Dilovarova, T., et al., Oxidative damage to various root and shoot tissues of durum and soft wheat seedlings during salinity, Agriculture, 2020, vol. 10, no. 3, p. 55. https://doi.org/10.3390/agriculture10030055

  49. Kruglova, N.N., Optimization of biotechnological production of wheat plants in vitro, Izv. Ufimsk. Nauchn. Tsentra, Ross. Akad. Nauk, 2012a, no. 3, pp. 57–61.

  50. Kruglova, N.N., Periodization of wheat germ development as a methodological aspect for biotechnological developments, Izv. Ufimsk. Nauchn. Tsentra, Ross. Akad. Nauk, 2012b, no. 2, pp. 21–24.

  51. Kruglova, N.N., Assessment of the collection of spring soft wheat genotypes by the resistance of autonomous embryos on selective media simulating a drought in vitro, Izv. Samar. Nauchn. Tsentra, Ross. Akad. Nauk, 2012c, vol. 14, no. 1 (9), pp. 2243–2245.

  52. Kruglova, N.N., Identification of the critical stage of wheat germ autonomy in vitro, Izv. Ufimsk. Nauchn. Tsentra, Ross. Akad. Nauk, 2013a, no. 1, pp. 42–45.

  53. Kruglova, N.N., Periodization of wheat embryo structure on the base of anatomy and morphology criteria, Mod. Phytomorphol., 2013b, vol. 4, pp. 181–183.

    Google Scholar 

  54. Kruglova, N.N., Identification of autonomy of a wheat germ as a stage in the development of express diagnostic of biotechnological obtaining of drought-resistant plants, Perm. Agrar. Vestn., 2014, no. 1 (5), pp. 38–43.

  55. Kruglova, N.N. and Sel’dimirova, O.A., Regeneratsiya pshenitsy in vitro i ex vitro: tsitologicheskie aspekty (Regeneration of Wheat Plants in Vitro and ex Vitro: Cytogenetic Aspects), Ufa: Gilem, 2011.

  56. Kruglova, N.N., Seldimirova, O.A., and Zinatulina, A.E., In vitro callus as a model system for the study of plant stress-resistance to abiotic factors (on the example of cereals), Biol. Bull. Rev., 2018a, vol. 8, pp. 518–526.

    Google Scholar 

  57. Kruglova, N.N., Sel’dimirova, O.A., Zinatullina, A.E., and Veselov, D.C., The critical stage of wheat germ autonomy in planta, Biomika, 2018b, vol. 10, no. 1, pp. 1–6.

    Google Scholar 

  58. Kruglova, N.N., Sel’dimirova, O.A., Zinatullina, A.E., and Nikonov, V.I., Identification of the relative autonomy in planta of zygotic embryos of spring soft wheat for optimization of biotechnological studies, Izv. Ufimsk. Nauchn. Tsentra Ross. Akad. Nauk, 2018c, no. 3, pp. 28–33.

  59. Kruglova, N.N., Sel’dimirova, O.A., Zinatullina, A.E., and Nikonov, V.I., Identification of drought-resistant wheat genotypes in vitro culture of immature embryos, Vestn. Bashkir. Gos. Agrar. Univ., 2019, vol. 52, no. 4, pp. 37–41.

    Google Scholar 

  60. Kruglova, N.N., Seldimirova, O.A., and Zinatulina, A.E., Structural features and hormonal regulation of the zygotic embryogenesis in cereals, Biol. Bull. Rev., 2020a, vol. 10, pp. 115–126.

    Google Scholar 

  61. Kruglova, N.N., Titova, G.E., Seldimirova, O.A., et al., Embryo of flowering plants at the critical stage of embryogenesis relative autonomy (by example of cereals), Russ. J. Dev. Biol., 2020b, vol. 51, no. 1, pp. 1–15.

    Google Scholar 

  62. Kruglova, N.N., Sel’dimirova, O.A., and Zinatulina, A.E., Callus cultures in vitro in the experimental evaluation of drought resistance of cereals, Tavricheskii Vestn. Agrar. Nauki, 2021a, no. 1 (25), pp. 124–139.

  63. Kruglova, N.N., Titova, G.E., Seldimirova, O.A., and Zinatulina, A.E., Cytophysiological features of the cereal-based experimental system “embryo in vivo–callus in vitro,” Russ. J. Dev. Biol., 2021, vol. 52, no. 4, pp. 199–214.

    Google Scholar 

  64. Kudoyarova, G.R., Kholodova, V.P., and Veselov, D.S., Current state of the problem of water relations in plants under water deficit, Russ. J. Plant Physiol., 2013, vol. 60, no. 2, pp. 165–175.

    CAS  Google Scholar 

  65. Kumari, P., Thaneshwari, and Rahul, Embryo rescue in horticultural crops, Int. J. Curr. Microbiol. Appl. Sci., 2018, vol. 7, pp. 3350–3358.

    Google Scholar 

  66. Kuznetsov, V.V. and Dmitrieva, G.A., Fiziologiya rastenii (Plant Physiology), Moscow: Abris, 2011.

  67. Leng, P. and Zhao, J., Transcription factors as molecular switches to regulate drought adaptation in maize, Theor. Appl. Genet., 2020, vol. 133, no. 5, pp. 1455–1465. https://doi.org/10.1007/s00122-019-03494-y

    Article  PubMed  Google Scholar 

  68. Maleki, M., Ghorbanpour, M., Nikabadi, S., et al., In vitro screening of crop plants for abiotic stress tolerance, in Recent Approaches in Omics for Plant Resilience to Climate Change, Wani, S., Ed., Cham: Springer-Verlag, 2019, pp. 75–91.

    Google Scholar 

  69. Medvedev, S.S. and Sharova, E.I., Biologiya razvitiya rastenii, Tom 1. Nachala biologii razvitiya rastenii. Fitogormony (Developmental Biology of the Plants, Vol. 1: Fundamentals of Developmental Biology of the Plants. Phytohormones), St. Petersburg: S.-Peterb. Gos. Univ., 2011.

  70. Mehraban, A., Tobe, A., Gholipouri, A., et al., Evaluation of drought tolerance indices and yield stability of wheat cultivars to drought stress in different growth stage, World J. Environ. Biosci., 2018, vol. 7, pp. 8–14.

    Google Scholar 

  71. Merks, R.M.H. and Guravage, M.A., Building simulation models of developing plant organs, in Plant Organogenesis: Methods and Protocols, Methods Mol. Biol., vol. 959, De Smet, I., Ed., New York: Springer-Verlag, 2013, pp. 333–352.

  72. Nikitina, E.D. and Khlebova, L.P., Influence of temperature and light on direct germination of immature embryos of Triticum aestivum L. in culture in vitro, Izv. Altai. Gos. Univ., Biol. Nauki, 2014, vol. 2, no. 3, pp. 46–50.

    Google Scholar 

  73. Nikitina, E.D., Khlebova, L.P., Sokolova, G.G., and Ereshchenko, O.V., Creation of stress-resistant spring soft wheat using cell selection in vitro, Izv. Altai. Gos. Univ., Biol. Nauki, 2013, no. 3, pp. 95–98.

  74. Nikitina, E.D., Khlebova, L.P., and Ereshchenko, O.V., Cell breeding of spring wheat for resistance to abiotic stresses, Izv. Altai. Gos. Univ., Biol. Nauki, 2014, vol. 2, no. 3, pp. 50–54.

    Google Scholar 

  75. Noga, A., Skrzypek, E., Warchoł, M., et al., Conversion of oat (Avena sativa L.) haploid embryos into plants in relation to embryo developmental stage and regeneration media, In Vitro Cell. Dev. Biol.: Plant, 2016, vol. 52, pp. 590–597.

    CAS  PubMed  Google Scholar 

  76. Osnovy biotekhnologii rastenii (Fundamentals of Plant Biotechnology), Kuluev, B.R., Kruglova, N.N., Zaripova, A.A., and Farkhutdinov, R.G., Eds., Ufa: Bashkir. Gos. Univ., 2017.

    Google Scholar 

  77. Parfenova, E.S., Shamova, M.G., Nabatova, N.A., et al., Assessment of the relative drought resistance of winter rye varieties by the germination on a sucrose solution, Mezhdunar. Zh. Prikl. Fundam. Issled., 2018, no. 11-2, pp. 347–351.

  78. Pérez-Clemente, R.M. and Gómez-Cadenas, A., In vitro tissue culture, a tool for the study and breeding of plants subjected to abiotic stress conditions, in Recent Advances in Plant In Vitro Culture, Leva, A. and Rinaldi, L., Eds., London: InTechOpen, 2012. https://doi.org/10.5772/50671

  79. Pikalo, S., Demidov, O., Yurchenko, T.I., et al., Assessment methods of drought resistance of selected wheat materials, Visn. L’viv. Univ., Ser. Biol., 2020, no. 82, pp. 63–79.

  80. Plant Embryo Culture: Methods and Protocols, Thorpe, T.A. and Yeung, E.C., Eds., Dordrecht: Springer-Verlag, 2011.

    Google Scholar 

  81. Plant Embryogenesis, Methods Mol. Biol., vol. 427, Suarez, M.E. and Bozhkov, P.V., Eds., Totowa, N.J.: Humana, 2008.

    Google Scholar 

  82. Plant Life under Changing Environment: Responses and Management, Tripathi, D.K. et al., Eds., Amsterdam: Elsevier, 2020.

    Google Scholar 

  83. Pykalo, S.V. and Dubrovna, O.V., Variability of the triticale genome in vitro, Cytol. Genet., 2018, vol. 52, pp. 385–393.

    Google Scholar 

  84. Pykalo, S.V., Demydov, O.A., Prokopik, N.I., et al., In vitro screening of the spring wheat F2 hybrids for water deficit resistance, ScienceRise: Biol. Sci., 2018, vol. 3, no. 12, pp. 12–18.

    Google Scholar 

  85. Pykalo, S., Demydov, O., Yurchenko, T., et al., Comparative assessment of methods for evaluation of drought tolerance in winter bread wheat varieties, ScienceRise: Biol. Sci., 2019, vol. 4, no. 19, рр. 17–21. https://doi.org/10.15587/2519-8025.2019.186813

  86. Raghavan, V., One hundred years of zygotic embryo culture investigations, In Vitro Cell. Dev. Biol.: Plant, 2003, vol. 39, pp. 437–442.

    Google Scholar 

  87. Raveena, Bharti, R., and Chaudhary, N., Drought resistance in wheat (Triticum aestivum L.): a review, Int. J. Curr. Microbiol. Appl. Sci., 2019, vol. 8, pp. 1780–1792.

    CAS  Google Scholar 

  88. Rosseev, V.M., Belan, I.A., and Rosseeva, L.P., Testing of spring soft wheat for drought reistance in vitro, Vestn. Altai. Gos. Agrar. Univ., 2011, vol. 76, no. 2, pp. 32–34.

  89. Rostami, H., Giri, A., Nejad, A.S.M., et al., Optimization of multiple shoot induction and plant regeneration in Indian barley (Hordeum vulgare) cultivars using mature embryos, Saudi J. Biol. Sci., 2013, vol. 20, pp. 251–255.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Sakkar, T., Thankappan, R., Mishra, G.P., and Nawa-de, B.D., Advances in the development and use of DREB for improved abiotic stress tolerance in transgenic crop plants, Physiol. Mol. Biol. Plants, 2019, vol. 25, pp. 1323–1334.

    Google Scholar 

  91. Sallam, A., Alqudah, A.M., Dawood, M. F., et al., Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research, Int. J. Mol. Sci., 2019, vol. 20. https://doi.org/10.3390/ijms20133137

  92. Sattar, S., Afzal, R., Bashir, I., et al., Biochemical, molecular and morpho-physiological attributes of wheat to upgrade grain production and compete with water stress, Int. J. Inn. Appl. Agric. Res., 2019, vol. 3, pp. 510–528.

    Google Scholar 

  93. Sel’dimirova, O.A., Testing of selective agents to evaluate the drought tolerance of spring soft wheat, Ekobiotekh, 2019, vol. 2, no. 1, pp. 51–62.

    Google Scholar 

  94. Sel’dimirova, O.A., Galin, I.R., Kruglova, N.N., and Veselov, D.S., Distribution of IAA and ABA in developing wheat germs in vivo, Izv. Ufimsk. Nauchn. Tsentra, Ross. Akad. Nauk, 2017a, no. 3 (1), pp. 114–118.

  95. Seldimirova, O.A., Kruglova, N.N., Titova, G.E., and Batygina, T.B., Comparative ultrastructural analysis of the in vitro microspore embryoids and in vivo zygotic embryos of wheat as a basis for understanding of cytophysiological aspects of their development, Russ. J. Dev. Biol., 2017b, vol. 48, no. 3, pp. 185–197.

    Google Scholar 

  96. Sel’dimirova, O.A., Kruglova, N.N., Galin, I.R., and Veselov, D.S., Comparative evaluation of IAA, ABA, and cytokinin levels during the embryogenesis in vivo of barley sv. Steptoe and its ABA-deficient mutant AZ34, Ekobiotekh, 2018, vol. 1, no. 3, pp. 134–142.

    Google Scholar 

  97. Shamrov, I.I., Semyazachatok tsvetkovykh rastenii: stroenie, funktsii, proiskhozhdenie (The Ovule of Flowering Plants: Structure, Functions, and Origin), Moscow: KMK, 2008.

  98. Shamrov, I.I., Embryogeny, in Embryology of Flowering Plants: Terminology and Concepts, Vol. 2: The Seed, Batygina, T.B., Ed., Boca Raton, FL: CRC Press, 2009, part 3, pp. 175–186.

  99. Shamrov, I.I. and Anisimova, G.M., Critical stages of ovule and seed development, Acta Biol. Cracov, Ser. Bot., 2003, vol. 45, pp. 167–172.

    Google Scholar 

  100. Shupletsova, O.N. and Shchennikova, I.N., The use of cell technologies in creation of new barley varieties resistant to aluminum toxicity and drought, Vavilovskii Zh. Gene-t. Sel., 2016, vol. 20, no. 5, pp. 623–628.

    Google Scholar 

  101. Sonmezoglu, O.A. and Terzi, B., Characterization of some bread wheat genotypes using molecular markers for drought tolerance, Physiol. Mol. Biol. Plants, 2018, vol. 24, pp. 159–166.

    Google Scholar 

  102. Sugimoto K., Temman, H., Kadokura, S., and Matsuna-ga, S., To regenerate or not to regenerate: factors that drive plant regeneration, Curr. Opin. Plant Biol., 2019, vol. 47, pp. 138–150.

    CAS  PubMed  Google Scholar 

  103. Tagimanova, D.S., Ergalieva, A.Zh., Raiser, O.B., and Khapilina, O.N., In vitro evaluation of spring soft wheat genotypes for drought resistance, Biotekhnol.: Teor. Prakt., 2013, no. 2, pp. 42–46.

  104. Terekhin, E.S., Semya i semennoe razmnozhenie (A Seed and Seed Reproduction), St. Petersburg: Mir i Sem’ya-95, 1996.

  105. Vartapetyan, B.B., Dolgikh, Yu.I., Polyakova, L.I., et al., Biotechnological approaches to creation of plants tolerant to hypoxia and anoxia, Acta Nat., 2014, vol. 6, no. 2 (21), pp. 21–33.

  106. Vasilyeva, V.E. and Batygina, T.B., Autonomy of the embryo, in Embryology of Flowering Plants: Terminology and Concepts, Vol. 2: The Seed, Batygina, T.B., Ed., Boca Raton, FL: CRC Press, 2006, pp. 375–382.

  107. Veselov, S.Yu., Sharipova, G.V., Timergalin, M.D., et al., Forecast of drought resistance by the content of abscisic acid and analysis of possible simplifying of the procedure for its quantitative assessment in wheat plants, Izv. Samar. Nauchn. Tsentra, Ross. Akad. Nauk, 2011, vol. 13, no. 5 (3), pp. 17–20.

  108. Wang, X., Zenda, T., Liu, S., et al., Comparative proteomics and physiological analyses reveal important maize filling-kernel drought-responsive genes and metabolic pathways, Int. J. Mol. Sci., 2019, vol. 20, no. 15, p. 3743. https://doi.org/10.3390/ijms20153743

  109. Wani, S., Kumar, V., Shriram, V., and Sah, S.K., Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants, Crop J., 2016, vol. 4, pp. 164–176.

    Google Scholar 

  110. Wareing, F.P. and Phillips, I.D.J., Growth and Differentiation in Plants, Oxford: Pergamon, 1981.

    Google Scholar 

  111. Yadav, S. and Sharma, K.D., Molecular and morphophysiological analysis of drought stress in plants, in Plant Growth, Rigobelo, E.C., Ed., London: InTechOpen, 2016, ch. 10. https://doi.org/10.5772/65246

  112. Yadav, A.K., Carroll, A.J., Estavillo, G.M., et al., Wheat drought tolerance in the field is predicted by amino acid responses to glasshouse-imposed drought, J. Exp. Bot., 2019, vol. 70, pp. 4931–4948.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Yadav, B., Jogawat, A., Rahman, M.S., et al., Secondary metabolites in the drought stress tolerance of crop plants: a review, Gene Rep., 2021, vol. 23. https://doi.org/10.1016/j.genrep.2021.101040

  114. Yang, C., Wang, D., Zhang, C., et al., Comprehensive analysis and expression profiling of PIN, AUX/LAX, and ABCB auxin transporter gene families in Solanum tuberosum under phytohormone stimuli and abiotic stresses, Biology, 2021, vol. 10, no. 2, p. 127. https://doi.org/10.3390/biology10020127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang, W., Wang, X., Fan, R., et al., Effects of inter-culture, arabinogalactan proteins, and hydrogen peroxide on the plant regeneration of wheat immature embryos, J. Integr. Agric., 2015, vol. 14, pp. 11–19.

    Google Scholar 

  116. Zinatullina, A.E., Model system “embryo-embryonal callus” in express assessment of stress and anti-stress effects (by the example of cereals), Ekobiotekh, 2020, vol. 3, no. 1, pp. 38–50.

    Google Scholar 

  117. Zinchenko, M.A., Dubrovnaya, O.V., and Bavol, A.V., Cellular selection of soft wheat for resistance to a complex of stress factors and analysis of obtained forms, Izv. Samar. Nauchn. Tsentra, Ross. Akad. Nauk, 2013, vol. 15, no. 3 (5), pp. 1610–1614.

  118. Zuraida, A.R., Naziah, B., Zamri, Z, and Sreeramanan, S., Efficient plant regeneration of Malaysian indica rice MR 219 and 232 via somatic embryogenesis system, Acta Physiol. Plant., 2011, vol. 33, pp. 1913–1921.

    CAS  Google Scholar 

Download references

Funding

This study was carried out on project no. AAAA-A18-118022190099-6 within the framework of the State Assignment of Ministry of Science and Higher Education of the Russian Federation, no. 075-00326-19-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Kruglova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

Translated by A. Aver’yanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruglova, N.N., Zinatullina, A.E. In Vitro Culture of Autonomous Embryos as a Model System for the Study of Plant Stress Tolerance to Abiotic Factors (on the Example of Cereals). Biol Bull Rev 12, 201–211 (2022). https://doi.org/10.1134/S2079086422020050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086422020050

Keywords:

Navigation