Skip to main content
Log in

Holomorphic normal form of nonlinear perturbations of nilpotent vector fields

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We consider germs of holomorphic vector fields at a fixed point having a nilpotent linear part at that point, in dimension n ≥ 3. Based on Belitskii’s work, we know that such a vector field is formally conjugate to a (formal) normal form. We give a condition on that normal form which ensures that the normalizing transformation is holomorphic at the fixed point.We shall show that this sufficient condition is a nilpotent version of Bruno’s condition (A). In dimension 2, no condition is required since, according to Stróżyna–Żołladek, each such germ is holomorphically conjugate to a Takens normal form. Our proof is based on Newton’s method and sl2(C)-representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V. I., Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Moscow: Mir, 1980.

    MATH  Google Scholar 

  2. Belitskii, G. R., Invariant Normal Forms of Formal Series, Funct. Anal. Appl., 1979, vol. 13, no. 1, pp. 46–47; see also: Funktsional. Anal. i Prilozhen., 1979, vol. 13, no. 1, pp. 59–60.

    Article  MathSciNet  MATH  Google Scholar 

  3. Belitskii, G. R., Normal Forms in Relation to the Filtering Action of a Group, Trans. Moscow Math. Soc., 1981, no. 2, pp. 1–39; see also: Tr. Mosk. Mat. Obs., 1979, vol. 40, pp. 3–46.

    MathSciNet  MATH  Google Scholar 

  4. Bourbaki, N., Groupes et algèbres de Lie: Chapitres 7 et 8, Paris: Hermann, 1975.

    Google Scholar 

  5. Bruno, A.D., Analytic Form of Differential Equations: 1, Tr. Mosk. Mat. Obs., 1971, vol. 25, pp. 119–262 (Russian); see also: Trans. Moscow Math. Soc., 1971, vol. 25, pp. 131–288; Bruno, A.D., Analytic Form of Differential Equations: 2, Tr. Mosk. Mat. Obs., 1972, vol. 26, pp. 199–239 (Russian); see also: Trans. Moscow Math. Soc., 1972, vol. 26, pp. 199–239.

    MathSciNet  Google Scholar 

  6. Bonckaert, P. and Verstringe, F., Normal Forms with Exponentially Small Remainder and Gevrey Normalization for Vector Fields with a Nilpotent Linear Part, Ann. Inst. Fourier (Grenoble), 2012, vol. 62, no. 6, pp. 2211–2225.

    Article  MathSciNet  MATH  Google Scholar 

  7. Canalis-Durand, M. and Schäfke, R., Divergence and Summability of Normal Forms of Systems of Differential Equations with Nilpotent Linear Part, Ann. Fac. Sci. Toulouse Math. (6), 2004, vol. 13, no. 4, pp. 493–513.

    Article  MathSciNet  MATH  Google Scholar 

  8. Cairns, G. and Ghys, E., The Local Linearization Problem for Smooth SL(n)-Actions, Enseign. Math. (2), 1997, vol. 43, nos. 1–2, pp. 133–171.

    MathSciNet  MATH  Google Scholar 

  9. Cushman, R. and Sanders, J.A., Nilpotent Normal Forms and Representation Theory of sl(2,R), in Multiparameter Bifurcation Theory (Arcata,Calif., 1985), Contemp. Math., vol. 56, Providence, R.I.: AMS, 1986, pp. 31–51.

    Article  MathSciNet  MATH  Google Scholar 

  10. Fischer, E., Über die Differentiationsprozesse der Algebra, J. Reine Angew. Math., 1918, vol. 148, pp. 1–78.

    MathSciNet  MATH  Google Scholar 

  11. Gong, X., Integrable Analytic Vector Fields with a Nilpotent Linear Part, Ann. Inst. Fourier (Grenoble), 1995, vol. 45, no. 5, pp. 1449–1470.

    Article  MathSciNet  MATH  Google Scholar 

  12. Grauert, H. and Remmert, R., Analytische Stellenalgebren, Grundlehren Math. Wiss., vol. 176, New York: Springer, 1971.

  13. Guillemin, V. W. and Sternberg, Sh., Remarks on a Paper of Hermann, Trans. Amer. Math. Soc., 1968, vol. 130, pp. 110–116.

    Article  MathSciNet  MATH  Google Scholar 

  14. Gazor, M. and Yu, P., Spectral Sequences and Parametric Normal Forms, J. Differential Equations, 2012, vol. 252, no. 2, pp. 1003–1031.

    Article  MathSciNet  MATH  Google Scholar 

  15. Hermann, R., The Formal Linearization of a Semisimple Lie Algebra of Vector Fields about a Singular Point, Trans. Amer. Math. Soc., 1968, vol. 130, pp. 105–109.

    Article  MathSciNet  MATH  Google Scholar 

  16. Iooss, G. and Lombardi, E., Polynomial Normal Forms with Exponentially Small Remainder for Analytic Vector Fields, J. Differential Equations, 2005, vol. 212, no. 1, pp. 1–61.

    Article  MathSciNet  MATH  Google Scholar 

  17. Ito, H., Convergence of Birkhoff Normal Forms for Integrable Systems, Comment. Math. Helv., 1989, vol. 64, no. 3, pp. 412–461.

    Article  MathSciNet  MATH  Google Scholar 

  18. Ito, H., Birkhoff Normalization and Superintegrability of Hamiltonian Systems, Ergodic Theory Dynam. Systems, 2009, vol. 29, no. 6, pp. 1853–1880.

    Article  MathSciNet  MATH  Google Scholar 

  19. Kokubu, H., Oka, H., and Wang, D., Linear Grading Function and Further Reduction of Normal Forms, J. Differential Equations, 1996, vol. 132, no. 2, pp. 293–318.

    Article  MathSciNet  MATH  Google Scholar 

  20. Kushnirenko, A.G., Linear-Equivalent Action of a Semisimple Lie Group in the Neighborhood of a Stationary Point, Funct. Anal. Appl., 1967, vol. 1, no. 1, pp. 89–90; see also: Funktsional. Anal. i Prilozhen., 1967, vol. 1, no. 1, pp. 103–104.

    Article  MathSciNet  MATH  Google Scholar 

  21. Loray, F., A Preparation Theorem for Codimension-One Foliations, Ann. of Math. (2), 2006, vol. 163, no. 2, pp. 709–722.

    Article  MathSciNet  MATH  Google Scholar 

  22. Lombardi, E. and Stolovitch, L., Normal Forms of Analytic Perturbations of Quasihomogeneous Vector Fields: Rigidity, Invariant Analytic Sets and Exponentially Small Approximation, Ann. Sci. Éc. Norm. Supér. (4), 2010, vol. 43, no. 4, pp. 659–718.

    MathSciNet  MATH  Google Scholar 

  23. Martinet, J., Normalisation des champs de vecteurs holomorphes (d’après A.-D.Brjuno), in Bourbaki Seminar: Vol. 1980/81, Lecture Notes in Math., vol. 901, New York: Springer, 1981, pp. 55–70.

    MathSciNet  Google Scholar 

  24. Moussu, R. and Cerveau, D., Groupes d’automorphismes de (C, 0) et équations différentielles ydy +· · · = 0, Bull. Soc. Math. France, 1988, vol. 116, no. 4, pp. 459–488.

    MathSciNet  MATH  Google Scholar 

  25. Moser, J., Stable and Random Motions in Dynamical Systems, Princeton,N.J.: Princeton Univ. Press, 2001.

    Book  MATH  Google Scholar 

  26. Murdock, J., Normal Forms and Unfoldings for Local Dynamical Systems, Springer Monogr. Math., Berlin: Springer, 2003.

    Book  MATH  Google Scholar 

  27. Murdock, J., Hypernormal Form Theory: Foundations and Algorithms, J. Differential Equations, 2004, vol. 205, no. 2, pp. 424–465.

    Article  MathSciNet  MATH  Google Scholar 

  28. Nowicki, A., Polynomial Derivations and Their Rings of Constants, Torun: Uniwersytet Mikolaja Kopernika, 1994.

    MATH  Google Scholar 

  29. Rüssmann, H., Über die Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung, Math. Ann., 1967, vol. 169, pp. 55–72.

    Article  MathSciNet  MATH  Google Scholar 

  30. Sanders, J.A., Normal Form Theory and Spectral Sequences, J. Differential Equations, 2003, vol. 192, no. 2, pp. 536–552.

    Article  MathSciNet  MATH  Google Scholar 

  31. Serre, J.-P., Complex Semisimple Lie Algebras, New York: Springer, 1987.

    Book  MATH  Google Scholar 

  32. Siegel, C. L., Iteration of Analytic Functions, Ann. of Math. (2), 1942, vol. 43, pp. 607–612.

    Article  MathSciNet  MATH  Google Scholar 

  33. Siegel, C. L. and Moser, J. K., Lectures on Celestial Mechanics, Grundlehren Math. Wiss., vol. 187, New York: Springer, 1971.

  34. Stolovitch, L., Singular Complete Integrabilty, Publ. Math. Inst. Hautes Études Sci., 2000, vol. 91, no. 1, pp. 133–210.

    Article  MathSciNet  MATH  Google Scholar 

  35. Stolovitch, L., Normalisation holomorphe d’algèbres de type Cartan de champs de vecteurs holomorphes singuliers, Ann. of Math. (2), 2005, vol. 161, no. 2, pp. 589–612.

    Article  MathSciNet  Google Scholar 

  36. Strżyna, E. and Zoladek, H., The Analytic and Formal Normal Form for the Nilpotent Singularity, J. Differential Equations, 2002, vol. 179, no. 2, pp. 479–537.

    Article  MathSciNet  MATH  Google Scholar 

  37. Strżyna, E. and Zoladek, H., Multidimensional Formal Takens Normal Form, Bull. Belg. Math. Soc. Simon Stevin, 2008, vol. 15, no. 5, pp. 927–934.

    MathSciNet  MATH  Google Scholar 

  38. Strżyna, E. and Zoladek, H., Divergence of the Reduction to the Multidimensional Nilpotent Takens Normal Form, Nonlinearity, 2011, vol. 24, no. 11, pp. 3129–3141.

    Article  MathSciNet  MATH  Google Scholar 

  39. Takens, F., Singularities of Vector Fields, Publ. Math. Inst. Hautes Études Sci., 1974, no. 43, pp. 47–100.

    Article  MathSciNet  MATH  Google Scholar 

  40. Vey, J., Sur certains systèmes dynamiques séparables, Amer. J. Math., 1978, vol. 100, no. 3, pp. 591–614.

    Article  MathSciNet  MATH  Google Scholar 

  41. Vey, J., Algèbres commutatives de champs de vecteurs isochores, Bull. Soc. Math. France, 1979, vol. 107, no. 4, pp. 423–432.

    MathSciNet  MATH  Google Scholar 

  42. Weitzenbock, R., Über die Invarianten von linearen Gruppen, Acta Math., 1932, vol. 58, no. 1, pp. 231–293.

    Article  MathSciNet  MATH  Google Scholar 

  43. Zung, Nguyen Tien, Convergence versus Integrability in Poincaré–Dulac Normal Form, Math. Res. Lett., 2002, vol. 9, nos. 2–3, pp. 217–228.

    Article  MathSciNet  MATH  Google Scholar 

  44. Zung, Nguyen Tien, Convergence versus Integrability in Birkhoff Normal Form, Ann. of Math. (2), 2005, vol. 161, no. 1, pp. 141–156.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Stolovitch.

Additional information

Research of L. Stolovitch was supported by ANR grant “ANR-10-BLAN 0102” for the project DynPDE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolovitch, L., Verstringe, F. Holomorphic normal form of nonlinear perturbations of nilpotent vector fields. Regul. Chaot. Dyn. 21, 410–436 (2016). https://doi.org/10.1134/S1560354716040031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354716040031

MSC2010 numbers

Keywords

Navigation