Skip to main content
Log in

Mineral System of the Streltsovka Caldera Uranium Deposits (East Transbaikalia)

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract—Various hypotheses, including alternative ones, have been put forward in the literature about the sources of ore substance and ore-forming fluids in the deposits of the Streltsovka ore field, which hosts the world’s largest uranium reserves, in excess of 250 000 t U: (1) uranium transport by ascending flow of ore-forming fluids that have separated from a deep subcrustal or intracrustal uranium-bearing felsic magma chamber and (2) uranium mobilization from uranium-bearing rocks of the volcano-tectonic structure of the Streltsovka caldera via postvolcanic thermoconvective circulation of the ore-forming fluids. For both hypotheses, the authors previously developed computer models of the paleohydronamic formation conditions of the largest in the ore field Antei–Streltsovka deposit, which presumed different uranium transport mechanisms with forced and free thermal convection of fluids, respectively. Both models yielded calculation results consistent with data on the reserves and formation temperatures of the Antei–Streltsovka ores. However, since the computer models are a simplified image of ore-forming systems, such agreement between the modeling results and a natural prototype only indicate the possibility of the proposed hypotheses on the formation conditions of the deposits. To solve the problem of their reality, additional information is necessary. Therefore, the authors of this paper have attempted a comparative analysis of the proposed alternative interpretations of the formation of the Antei–Streltsovka deposit using a methodology elaborated within the mineral systems concept. The results of our analysis substantiate the idea of successive forms of uranium transport by magmatic melt and ore-forming fluid to the mineral system of the Streltsovka ore field. The deep magmatic source was a feeder chamber for uranium transport by magmatic melts to the upper horizons of the crust with the formation of uranium-bearing rocks of the subvolcanic chamber and volcanic eruptions of the Streltsovka caldera. After uranium transport via magmatic melts, its subsequent redistribution occurred in the paleohydrothermal system with free thermal convection of fluids in the residual temperature field of the Streltsovka subvolcanic chamber. In this case, in the thermoconvective fluid circulation loop, conjugate processes of uranium mobilization could have taken place: (1) from the consolidated subvolcanic chamber, (2) from granitoid rocks of the caldera’s basement, and (3) from igneous felsic rocks in the caldera’s volcano-sedimentary cover. The coparticipation of these three potentially highly productive uranium sources in the ore mineralization process explains the origin of the unique uranium ore reserves of the Streltsovka ore field deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Aleshin, A.P., Velichkin, V.I., and Krylova, T.L., Genesis and formation conditions of deposits in the unique Strel’tsovka molybdenum–uranium ore field: new mineralogical, geochemical, and physicochemical evidence, Geol. Ore Deposits, 2007, vol. 49, no. 5, pp. 392–412.

    Article  Google Scholar 

  2. Andreeva, O.V., Vol’fson, I.F., Golovin, V.A., and Rossman, G.I., Uranium behavior during low-temperature alteration of host rocks at the uranium deposits, Geokhimiya, 1990, no. 2, pp. 206–215.

  3. Andreeva, O.V., Aleshin, A.P., and Golovin, V.A., Vertical zonality of wall rock alterations at the Antei–Strel’tsovsk uranium deposit, Eastern Transbaikal region, Russia, Geol. Ore Deposits, 1996, vol. 38, no. 5, pp. 353–366.

    Google Scholar 

  4. Andreeva, O.V. and Golovin, V.A., Metasomatic processes at uranium deposits of Tulukuev Caldera, Eastern Transbaikal region, Russia, Geol. Ore Deposits, 1998, vol. 40, no. 3, pp. 184–196.

    Google Scholar 

  5. Bruneton, P., Chemillac, R., and Cuney, M., Uranium deposits in volcanic environments: a review. Mineral resources in sustainable world, Proceedings of 13th Biennual SGA Meeting. Nancy, France,2015 (Nancy, 2015), Vol. 5, pp. 1785–1788.

  6. Chabiron, A., Alyoshin, A.P., Cuney, M., Deloule, E., Golubev, V.N., Velitchkin, V.I., and Poty, B., Geochemistry of the rhyolitic magmas from the Streltsovka caldera (Transbaikalia, Russia): a melt inclusion study, Chem. Geol., 2001, vol. 175, pp. 273–290.

    Article  Google Scholar 

  7. Chabiron, A., Cuney, M., and Poty, B., Possible uranium sources for the largest uranium district associated with volcanism: the Streltsovka caldera (Transbaikalia, Russia), Miner. Deposita, 2003, vol. 38, no. 2, pp. 127–140.

    Article  Google Scholar 

  8. Cuney, M. and Kyser, K., Recent and not-so-recent developments in uranium deposits and implications for exploration, Mineralo. Ass.Canada.Short Course Ser., 2009, vol. 39.

    Google Scholar 

  9. Geologo–geneticheskie i fiziko–khimicheskie osnovy modeli greizenovoi rudnoi formatsii (Geological–Genetic and Physicochemical Principles of the Model of Greisen Ore Formation) Kolonin, G.R, Eds., Novosibirsk: VO Nauka, 1992.

  10. Goodell, P.C. Classification and model of uranium deposits in volcanic environments, Uranium Deposits in Volcanic Rocks, Vienna: IAEA, 1985, pp. 1–16.

    Google Scholar 

  11. Hagemann, S.G., Lisitsin, V., and Huston, D.L., Mineral system analysis: quo vadis, Ore Geol. Rev, 2016, vol. 76, pp. 504–522.

    Article  Google Scholar 

  12. Huston, D.L., Mernagh, T.R., Hagemann, S.G., Doublier, M.P., Fiorentini, M., Champion, D.C., Jaques, A.L., Czarnota, K., Cayley, R., Skirrow, R., and Bastrakov, E., Tectono–metallogenic systems – the place of mineral systems within tectonic evolution, with an emphasis on Australian examples, Ore Geol. Rev., 2016, vol. 76, pp. 168–210.

    Article  Google Scholar 

  13. Ishchukova, L.P., Igoshin, Yu.A., Avdeev, B.V., et al., Geologiya Urulyunguevskogo rudnogo raiona i molibden–uranovykh mestorozhdenii Strel’tsovskogo rudnogo polya (Geology of the Urulyunguev Ore District and Molybdenum–Uranium Deposits of the Streltsovka Ore Field), Moscow: Geoinformmark, 1998.

  14. Ishchukova, L.P., Ashikhmin, A.A., Konstantinov, A.K., Kostikov, A.T., Modnikov, I.S., Sychev, I.V., Tolkachev, A.E., Chesnokov, L.V., and Shumilin, M.V., Uranovye mestorozhdeniya v vulkano–tektonicheskikh strukturakh (Uranium Deposits in Volcanotectonic Structures), Moscow: VIMS, 2005.

  15. Ishchukova, L.P., Modnikov, I.S., Sychev, I.V., Naumov, G.B., Mel’nikov, I.V., and Kandinov, M.N., Uranovye mestorozhdeniya Strel’tsovskogo rudnogo polya v Zabaikal’e (Uranium Deposits of the Streltsovka Ore Field in Transbaikalia), Naumov, S.S, Eds., Irkutsk: Geolrazvedka, 2007.

  16. Kovalenko, D.V., Petrov, V.A., Poluektov, V.V., and Ageeva, O.A., Geodynamic settings of the formation of Mesozoic volcanics (Strel’tsovka Caldera, Transbaikal Region), Dokl. Earth Sci., 2014, vol. 457, no. 5, pp. 931–934.

    Article  Google Scholar 

  17. Kovalenko, D.V., Petrov, V.A., Poluektov, V.V., and Ageeva, O.A., Geodynamic setting of the Mesozoic mantle rocks of the Strel’tsovka Caldera (Eastern Transbaikalia), mantle domains of Central Asia and China, Vestn. KRAUNTs.Nauki Zemle, 2015, vol. 4, no. 28, pp. 231–246.

    Google Scholar 

  18. Krylova, T.L., Aleshin, A.P., Lhomme, T., et al., New data on the formation conditions of the uranium ores at the Streltsovsky and Antei deposits (Eastern Transbaikalia, Russia), 12th Quadrennial IAGOD Symp. “Understanding the Genesis of Ore Deposits to Meet the Demands of the 21th Century”, Moscow, 2006. CD-ROM version.

  19. Krylova, T.L., Aleshin, A.P., Lomm, T., Velichkin, V.I., and Kyune, M., Evidence for magmatogenic origin of ore-forming fluids at the Mo–U deposits of the Strel’tsovka ore field, Eastern Transbaikalia, Russia, Mater. XIII Mezhdunarodnoi konferentsii po termobarogeokhimii i IV simpoziuma ARIFIS (Proc. 13th International Conference on Thermobarogeochemistry and 4th ARIFIS Symposim), 2008, vol. 2, pp. 64–67.

  20. Laverov, N.P. and Chernyshev, I.V., Temporal relation of uranium deposits with continental volcanism, Geokhronologiya i problemy rudoobrazoaniya (Geochronology and Problems of Ore Formation), Moscow: Nauka, 1977, pp. 5–18.

    Google Scholar 

  21. Malkovsky, V.I. and Pek, A.A., Vliyanie razryvnykh narushenii na protsessy flyuidnogo teplomassoperenosa v zemnoi kore (Influence of Faults on the Fluid Heat Transfer in the Earth’s Crust), Moscow: IFZ RAN, IGEM RAN, 2014.

  22. Malkovsky, V.I., Pek, A.A., Aleshin, A.P., and Velichkin, V.I., Model of heat and mass transfer by fluid during formation of Mo–U Deposits in the Strel’tsovka Ore Field, eastern Transbaikal Region: forced convection of solutions generated by a deep source, Geol. Ore Deposits, 2010, vol. 52, no. 1, pp. 14–31.

    Article  Google Scholar 

  23. Mashkovtsev, G.A., Konstantinov, A.K., Miguta, A.K., Shumilin, M.V., and Shchetochkin, V.N., Uran rossiiskikh nedr (Uranium of Russian Interior), Moscow: VIMS, 2010.

  24. Modnikov, I.S. and Sychev, I.V., Conditions of formation of uranium mineralization in volcanic subsidence depressions, Geol. Rudn. Mestorozhd., 1984, vol. 26, no. 1, pp. 31–41.

    Google Scholar 

  25. Nash, J.T., Volcanogenic uranium deposits. Geology, geochemical processes, and criteria for resource assessment, U.S. Geological Survey Open–File Rept., 2010, no. 2010–1001.

  26. Naumov, G.B., Mironenko, M.V., Salazkin, A.N., et al., New data on the geochemical conditions of formation of deposits of the Streltsovka ore field and their practical significance, Mater. po geologii uranovykh mestorozhdenii (Proc. on Geology of Uranium Deposits), Moscow: VIMS, 1985, vol. 93. book 2, pp. 65–74.

  27. Naumov, V.B., Rhyolitic melts in eastern Transbaikalia and the North Caucasus: chemical composition, volatiles, and admixture elements (from data of study of melt inclusions in mirnerals), Russ. Geol. Geophys., 2011, no. 11, pp. 1368–1377.

  28. Peiffert, C., Nguyen, T.C., and Cuney, M., Uranium in granitic magmas. Part 2. Experimental determination of uranium solubility and fluid–melt partition coefficients in the uranium oxide–haplogranite–H2O–NaX (X = Cl, F) system at 770oc, 2 kbar, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 1515–1529.

    Article  Google Scholar 

  29. Petrov, V.A., Andreeva, O.V., Poluektov, V.V., and Kovalenko, D.V., Tectono-magmatic cycles and geodynamic settings of ore-bearing system formation in the southern Cis-Argun Region, Geol. Ore Deposits, 2017, vol.59, no. 6, pp. 431–452.

    Article  Google Scholar 

  30. Pek, A.A., Malkovsky, V.I., and Petrov, V.A., Thermal Convection of fluids as a possible mechanism for the formation of the unique Streltsovka and Antei uranium deposits (Eastern Transbaikalia), Geol. Ore Deposits, 2018, vol. 60, no. 6, pp. 497–512.

    Article  Google Scholar 

  31. Pirajno, F., Hydrothermal Processes and Mineral Systems, Springer, 2009.

    Book  Google Scholar 

  32. Pirajno, F., A classification of mineral systems, overviews of plate tectonic margins and examples of ore deposits associated with convergent margins, Gondwana Res., 2016, vol. 33, pp. 44–62.

    Article  Google Scholar 

  33. Plant, J.A., Simpson, P.R., Smith, B., and Windley, B.F., Uranium ore deposits – products of the radioactive Earth, Rev. Mineral., 1999, vol. 38, pp. 255–319.

    Google Scholar 

  34. Red’kin, A.F., Velichkin, V.I., Aleshin, A.P., and Borodulin, G.P., Interaction of model F-bearing silicic melt with chloride fluid, uraninite, and columbite at 750°C and 1000–2000 Bar and its implications for estimation of the ore-forming capability of the upper crustal magma chamber beneath the Strel’tsovka Caldera, Eastern Transbaikalia, Geol. Ore Deposits, 2009, vol. 51, no. 4, pp. 290–304.

    Article  Google Scholar 

  35. Reif, F.G., Rudoobrazuyushchii potentsial granitov i usloviya ego realizatsii (Ore-Forming Potential of Granites and Conditions of its Implementation), Moscow: Nauka, 1990.

  36. Reif, F.G., Usloviya i mekhanizmy formirovaniya granitnykh rudno–magmaticheskikh sistem (Conditions and Mechanisms of Formation of Granitic Ore-Magmatic Systems), Moscow: IMGRE, 2009.

  37. Rybalov, B.L. and Omel’yanenko, B.I., Istochniki rudnogo veshchestva endogennykh uranovykh mestorozhdenii (Ore Sourfces of Endogenous Uranium Deposits), Moscow: Nauka, 1989.

  38. Shatkov, G.A., Streltsovka type of uranium deposits, Regional.Geol. Metallogen., 2015, vol. 63, pp. 85–96.

    Google Scholar 

  39. Shatkova, L.N. and Shatkov, G.A., On possible source of ore matter of the uranium–fluorite deposits, Geol. Rudn. Mestorozhd., 1973, vol. 15, no. 4, pp. 36–43.

    Google Scholar 

  40. Skirrow, R.G., Jaireth, S., Huston, D.L., Bastrakov, E.N., Schofield, A., van der Wielen, S.E., and Barnicoat, A.C., Uranium mineral systems: Processes, exploration criteria and a new deposit framework, Geosci. Austral. Rec., 2009, 2009/20.

  41. Tarkhanov, A.V. and Bugrieva, E.P., World’s largest uranium deposits, Mineral’noe syr’e (Mineral Raw Material), Moscow: VIMS, 2012, no. 27.

  42. Timofeev, A., Migdisov, A.A., Williams–Jones, A.E., Roback, R., Nelson, A.T., and Xu, H., Uranium transport in acidic brines under reducing conditions, Nature Commun., 2018, vol. 9, pp. 1469–1475. https://doi.org/10.1038/s41467-018-03564-7

    Article  Google Scholar 

  43. Uranium 2016: Resources, Production, Demand. NEA/IAEA, ORCD, 2016.

  44. Uranium Deposits in Volcanic Rocks, Vienna: IAEA, 1985.

  45. World Distribution of Uranium Deposits (UDEPO) with Uranium Deposit Cassification, 2009 Edition, Vienna, 2009, IAEA–TECDOC–1629.

  46. Wyborn, L.A.I., Heinrich, C.A., and Jaques, A.L., Australian Proterozoic mineral systems: essential ingredients and mappable criteria, AusIMM Publ.Ser., 1994, 4/94, pp. 109–115.

    Google Scholar 

  47. Zharikov, V.A., Ivanov, I.P., Omel’yanenko, B.I., Red’kin, A.F., and Yudintsev, S.V., Experimental study of uraninite solubility in model granitic melts and solutions at high parameters, Geol. Rudn,Mestorozhd., 1987, vol. 29, no. 4, pp. 3–12.

    Google Scholar 

  48. Zielinski, R.A., Volcanic rocks as sources of uranium, Uranium Deposits in Volcanic Rocks, Vienna: IAEA, 1985, pp. 83–95.

Download references

ACKNOWLEDGMENTS

The authors thank Academician N.S. Bortnikov for constructive comments and helpful discussions in the preparation of the manuscript.

Funding

The study was financially supported by the state task of the Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, “Tectonodynamic and Physicochemical Conditions for the Mobilization, Transport, and Deposition of Uranium in the Formation of the Main Industrial-Genetic Types of Uranium Deposits.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Pek.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pek, A.A., Malkovsky, V.I. & Petrov, V.A. Mineral System of the Streltsovka Caldera Uranium Deposits (East Transbaikalia). Geol. Ore Deposits 62, 31–48 (2020). https://doi.org/10.1134/S1075701520010055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701520010055

Keywords:

Navigation