Skip to main content
Log in

Uranium Sources and Fluid Transport in Volcanic Mineralized Systems: an Example of Streltsovka Caldera, Russia with Reflection on Dornot, Mongolia

  • Published:
Journal of Volcanology and Seismology Aims and scope Submit manuscript

Abstract

According to the IAEA classification (Geological Classification …, 2018), uranium deposits of the Streltsovka caldera in the South-Eastern Transbaikalia belong to the volcanogenic (volcanic-related) type based on the characteristics of host rock and/or ore-localizing structure. The implementation of such a descriptive taxonomy in classification of uranium deposits has a long history, but its limitations and the need for transition to models of uranium mineral systems (Descriptive Uranium …, 2020) are becoming increasingly evident. Such a transition for the deposits of the Streltsovka caldera is relevant and logical, bearing in mind a representative example of the space-time relationship of uranium ores in the basement and in the cover of the caldera, which is manifested in the Antei-Streltsovka mineral system (Pek et al., 2020). One of the key points of the mineral-system approach is the reconstruction of the environment of origin and dynamics of system-forming elements interaction in the “source → transport → deposition” sequence. We consider in the article two models of this interaction: (i) the model of forced convection of fluids with a deep-seated magmatic source of uranium and (ii) the model of free thermal convection of fluids with crustal sources of uranium. The hypothesis of thermoconvective circulation of fluids in the residual thermal field of the caldera magma chamber, which is verified by numerical models, substantiates the supply of uranium from three sources of its nearby mobilization: 1) subcaldera chamber, 2) basement rocks, and 3) volcanic rocks filling the caldera. Participation in the ore genesis of the three highly productive uranium sources sheds light upon the origin of the Streltsovka caldera unique ore reserves (~300 000 tU), as compared to the similar in age uranium mineralization of the Dornot ore field (33 000 tU) located about 500 km to the southwest in the territory of Eastern Mongolia (Geological Classification …, 2018).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Aleshin, A.P., Velichkin, V.I., and Krylova, T.L., Genesis and formation conditions of deposits in the unique Streltsovka molybdenum–uranium ore field: new mineralogical, geochemical, and physicochemical evidence, Geology of Ore Deposits, 2007, vol. 49, no. 5, pp. 392–412.

    Article  Google Scholar 

  2. Andreeva, O.V., Vol’fson, I.F., Golovin, V.A., and Rossman, G.I., Uranium behavior during low-temperature alteration of host rocks at the uranium deposits, Geokhimiya, 1990, no. 2, pp. 206–215.

  3. Andreeva, O.V., Aleshin, A.P., and Golovin, V.A., Vertical zonality of wall rock alterations at the Antei–Strel’tsovsk uranium deposit. Eastern Transbaikal region, Russia, Geology of Ore Deposits, 1996, vol. 38, no. 5, pp. 353–366.

    Google Scholar 

  4. Andreeva, O.V. and Golovin, V.A., Metasomatic processes at uranium deposits of Tulukuev Caldera, Eastern Transbaikal region, Russia, Geology of Ore Deposits, 1998, vol. 40, no. 3, pp. 184–196.

    Google Scholar 

  5. Andreeva, O.V., Petrov, V.A., and Poluektov, V.V., Mesozoic acid magmatites of Southeastern Transbaikalia: petrogeochemistry and relationship with metasomatism and ore formation, Geology of Ore Deposits, 2020, vol. 62, no. 1, pp. 69–96.

    Article  Google Scholar 

  6. Burov, E.B. and Guillou-Frottier, L., Thermo-mechanical behavior of large ash-flow calderas, J. Geophys. Res., 1999, vol. 104, pp. 23 081–23 109.

  7. Cathles, L.M., Thermal aspects of ore formation, in Geochemistry of Hydrothermal Ore Deposits, 3rd ed., Barnes, H.L., Ed., Wiley, New York, 1997, pp. 191–227.

    Google Scholar 

  8. Chabiron, A., Cuney, M., and Poty, B., Possible uranium sources for the largest uranium district associated with volcanism: the Streltsovka caldera (Transbaikalia, Russia), Mineralium Deposita, 2003, vol. 38, no. 2, pp. 127–140.

    Article  Google Scholar 

  9. Chemillac, R., Cuney, M., Petrov, V.A., Golubev, V.N., and Pujol, M., Uranium deposit favourability estimation from pristine rhyolitic magma composition of the Dornot uranium orefield, Mongolia, in Int. Symp. Uranium Prod. Raw Mat. for Nucl. Fuel Cycle, Vienna, Austria: IAEA, 2005, pp. 96–99.

  10. Chernyshev, I.V. and Golubev, V.N., Isotopic geochronology of formation processes of the Streltsovska deposit (Eastern Transbaikalia), Geokhimiya, 1996, no. 10, pp. 924–937.

  11. Cuney, M., The extreme diversity of uranium deposits, Mineralium Deposita, 2009, vol. 44, pp 3–9.

    Article  Google Scholar 

  12. Cuney, M. and Kyser, K., Recent and Not-So-Recent Developments in Uranium Deposits and Implications for Exploration, Mineralogical Association of Canada, Short Course Series, 2009, vol. 39.

    Google Scholar 

  13. Dahlcamp, F.J., Uranium Deposits of the World: Asia, Berlin and Heidelberg: Springer-Verlag, 2009.

    Book  Google Scholar 

  14. Descriptive Uranium Deposit and Mineral System Models, Vienna: IAEA, 2020.

  15. Ingebritsen, S.E. and Manning, C.E., Permeability of the continental crust: dynamic variations inferred from seismicity and metamorphism, Geofluids, 2010, nos. 1–2, pp. 193–205.

  16. Ingebritsen, S.E. and Appold, M.S., The physical hydrogeology of ore deposits, Economic Geology, 2012, vol. 107, pp. 559–584.

    Article  Google Scholar 

  17. Ishchukova, L.P., Igoshin, Yu.A., Avdeev, B.V., et al., Geologiya Urulyunguevskogo rudnogo raiona i molibden-uranovykh mestorozhdenii Streltsovskogo rudnogo polya (Geology of the Urulyunguev Ore District and Molybdenum-Uranium Deposits of the Streltsovka Ore Field), Moscow: Geoinformmark, 1998.

  18. Ishchukova, L.P., Modnikov, I.S., Sychev, I.V., Naumov, G.B., Mel’nikov, I.V., and Kandinov, M.N., Uranovye mestorozhdeniya Streltsovskogo rudnogo polya v Zabaikalie (Uranium Deposits of the Streltsovka Ore Field in Transbaikalia), Irkutsk: Geolrazvedka, 2007.

  19. Faulkner, D.R., Jackson, C.A.L., Lunn, R.J., Schlische, R.W., Shipton, Z.K., Wibberley, C.A.J., and Withjack, M.O., A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones, J. Structural Geol., 2010, vol. 32, pp. 1557–1575

    Article  Google Scholar 

  20. Geological Classification of Uranium Deposits and Description of Selected Examples, Vienna: IAEA-TECDOC SERIES-1842, 2018.

  21. Guillou-Frottier, L., Burov, E.B., and Milesi, J.-P., Genetic links between ash-flow calderas and associated ore deposits as revealed by large-scale thermo-mechanical modeling, J. Volcanol. Geotherm. Res., 2000, vol. 102, pp. 339–361.

    Article  Google Scholar 

  22. Kosiakov V.V., Melnikov I.V., Rodnov E.A. On the mechanism of interaction of ore-bearing hydrothermal solutions with organic matter of sedimentary genesis in the formation of uranium deposits in paleovolcanic depressions (on the example of the Streltsovska ore field), in Materialy po geologii uranovykh mestorozhdenii, Informatsionnyi Sbornik, vol. 45, 1977, pp. 105–113.

    Google Scholar 

  23. Kovalenko, D.V., Petrov, V.A., Poluektov, V.V., and Ageeva, O.A., Geodynamic conditions for the formation of Mesozoic volcanic rocks of the Streltsovka Caldera, Dokl. Akad. Nauk, 2014, vol. 457, no. 5, pp. 564–567.

    Google Scholar 

  24. Kovalenko, D.V., Petrov, V.A., and Poluektov, V.V., Geodynamic position of Mesozoic mantle rocks of the Streltsovka Caldera (Eastern Transbaikalia), mantle domains of Central Asia and China, Vestnik KRAUNTS, Nauki o Zemle, 2015, vol. 28, no. 4, pp. 231–246.

  25. Krylova, T.L., Aleshin, A.P., Lomm, T., et al., New data on the formation conditions of the uranium ore at the Streltsovsky and Antei deposits (Eastern Transbaikalia, Russia), in 12th Quadrennial IAGOD Symp. “Understanding the Genesis of Ore Deposits to Meet the Demands of the 21th Century”, Moscow, 2006. CD-ROM version.

  26. Krylova, T.L., Aleshin, A.P., Lomm, T., Velichkin, V.I., and Cuney, M., Evidence for magmatogenic origin of ore-forming fluids at the Mo–U deposits of the Strel’tsovka ore field, Eastern Transbaikalia, Russia, in Materialy XIII Mezhdunarodnoi konferentsii po termobarogeokhimii i IV simpoziuma ARIFIS (Proc. XIII Intern. Conf. on Thermobarogeochemistry and the IV ARIFIS Symp.), Moscow, 2008, vol. 2, pp. 64–67.

  27. Laznicka, P., Giant metallic deposits – A century of progress, Ore Geology Reviews, 2014, vol. 62, pp. 259–314.

    Article  Google Scholar 

  28. Lipman, P.W., Subsidence of ash flow calderas: Relation to caldera size and magma-chamber geometry, Bull. Volcanol., 1997, vol. 59, pp. 198–218.

    Article  Google Scholar 

  29. Luchitsky I.V. and Bondarenko P.M. The mechanism of formation of concentric structures over a magmatic chamber (according to experimental data), Geol. Geofiz., 1974, no. 10, pp. 3–19.

  30. Malkovsky, V.I., Pek, A.A., Aleshin, A. P., and Velichkin, V.I., Estimation of the time of magma chamber solidification beneath the Streltsovka Caldera and its effect on the nonstationary temperature distribution in the upper crust, the eastern Transbaikal region, Russia, Geology of Ore Deposits, 2008, vol. 50, no. 3, pp. 192–198.

    Article  Google Scholar 

  31. Malkovsky, V.I., Pek, A.A., Aleshin, A.P., and Velichkin, V.I., Model of heat and mass transfer by fluid during formation of Mo–U Deposits in the Strel’tsovka Ore Field, eastern Transbaikal Region: forced convection of solutions generated by a deep source, Geology of Ore Deposits, 2010, vol. 52, no. 1, pp. 14–31.

    Article  Google Scholar 

  32. Malkovsky, V.I. and Pek, A.A., Vliyanie razryvnykh narushenii na protsessy flyuidnogo teplomassoperenosa v zemnoi kore (Influence of Faults on the Fluid Heat and Mass Transfer in the Earth’s Crust), Moscow: IFZ RAN - IGEM RAN, 2014.

  33. Mashkovtsev, G.A., Konstantinov, A.K., Miguta, A.K., Shumilin, M.V., and Shchetochkin, V.N., Uran Rossiiskikh nedr (Uranium of Russian Interior), Moscow: VIMS, 2010.

  34. Mironov, Yu.B., Uran v Mongolii (Uranium in Mongolia), St. Petersburg, 2006.

  35. Mironov, Yu.B., Filonenko, Yu.D., Soloviev, N.S., Petrov, V.A., Golovin, V.A., and Streltsov, V.A., Lead–zinc, uranium and fluorite deposits in the Dornot volcano-tectonic structure (Eastern Mongolia), Geology of Ore Deposits, 1993, vol. 35, no. 1, pp. 31–43.

    Google Scholar 

  36. Modnikov, I.S. and Sychev, I.V., Conditions of formation of uranium mineralization in volcanic subsidence depressions, Geology of Ore Deposits, 1984, vol. 26, no. 1, pp. 31–41.

    Google Scholar 

  37. Peiffert, C., Nguyen, T.C., and Cuney, M., Uranium in granitic magmas. Part 2. Experimental determination of uranium solubility and fluid–melt partition coefficients in the uranium oxide–haplogranite–H2O–NaX (X = Cl, F) system at 770°C, 2 kbar, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 1515–1529.

    Article  Google Scholar 

  38. Pek, A.A., Malkovsky, V.I., and Safonov, Yu.G., Continuum of hydrothermal goldfields related to the deeply penetrating fault zones: A hydrothermal system with forced convection of fluids, in Problemy rudnoi geologii, petrologii, mineralogii i geokhimii (Problems of Ore Geology, Petrology, Mineralogy, and Geochemistry), Moscow: IGEM RAS, 2004, pp. 130–147.

  39. Pek, A.A., Malkovsky, V.I., and Petrov, V.A., Thermal convection of fluids as a possible mechanism for the formation of the unique Streltsovka and Antei uranium deposits (eastern Transbaikalia), Geology of Ore Deposits, 2018, vol. 60, no. 6, pp. 497–512.

    Article  Google Scholar 

  40. Pek, A.A., Malkovsky, V.I., and Petrov, V.A., The mineral system of the Streltsovka caldera uranium deposits (eastern Transbaikalia), Geology of Ore Deposits, 2020, vol. 62, no. 1, pp. 31–48.

    Article  Google Scholar 

  41. Petrov V.A. Tectonophysical conditions of the formation of the Eastern Trans-Baikal uranium ore province, in Sbornik trudov nauchnoi konferentsii, posvyashchennoi 100-letiyu so dnya rozhdeniya professora, laureata Leninskoi premii F.I. Volfsona (1907–1989) (Proc. Conf. Devoted to the 100th Anniversary of Professor, Laureate of Lenin Prize F.I. Volfson (1907–1989)), Moscow, IGEM RAN, November 21–22, 2007, Laverov, N.P. and Velichkin, V.I., Eds., Moscow: IGEM RAS, 2007, pp. 140–144.

  42. Petrov, V.A., Golubev, V.N., and Golovin, V.A., Structural, geochemical and isotopic evolution of uranium deposits in the Domot ore field, Mongolia, in Uranium Deposits: From their Genesis to their Environmental Aspects, Kribek, B. and Zeman, J., Eds., Prague: Czech. Geol. Surv., 2002, pp. 103–106.

    Google Scholar 

  43. Petrov, V.A., Golubev, V.N., and Golovin, V.A., An unique uranium mineralization in pillow lavas, Dornot ore field, Mongolia, in Proc. Intern. Conf. Uranium Geochemistry 2003, Nancy, France, 2003, pp. 289–292.

  44. Petrov V.A., Andreeva O.V., Poluektov V.V. Effect of petrophysical properties and deformation on vertical zoning of metasomatic rocks in U-bearing volcanic structures: a case of the Strel’tsovka caldera, Transbaikal Region, Geology of Ore Deposits, 2014, vol. 56, no. 2, pp. 81–100.

    Article  Google Scholar 

  45. Petrov, V.A., Rebetski, Yu.L., Poluektov, V.V., and Burmistrov, A.A., Tectonophysics of hydrothermal ore formation: An example of the Antei Mo-U deposit, Transbaikalia, Geology of Ore Deposits, 2015, vol. 57, no. 4, pp. 292–312.

    Article  Google Scholar 

  46. Petrov, V.A., Andreeva, O.V., Poluektov, V.V., and Kovalenko, D.V., Tectono-magmatic cycles and geodynamic settings of ore-bearing system formation in the southern Cis-Argun Region, Geology of Ore Deposits, 2017, vol. 59, no. 6, pp. 431–452.

    Article  Google Scholar 

  47. Petrov, V.A., Andreeva, O.V., Poluektov, V.V., and Kovalenko, D.V., Uranium-bearing volcanic structures: Streltsovka (Russia), Xiangsnan (China), and McDermitt (United States). A comparative analysis of the Petrology of Felsic Volcanics and the composition of near-ore metasomatites, Geology of Ore Deposits, 2021, vol. 63, Suppl. no. 1, pp. S1–S28.

    Article  Google Scholar 

  48. Red’kin, A.F., Velichkin, V.I., Aleshin, A.P., and Borodulin, G.P., Interaction of model F-bearing silicic melt with chloride fluid, uraninite, and columbite at 750°C and 1000–2000 Bar and its implications for estimation of the ore-forming capability of the upper crustal magma chamber beneath the Strel’tsovka Caldera, Eastern Transbaikalia, Geology of Ore Deposits, 2009, vol. 51, no. 4, pp. 290–304.

    Article  Google Scholar 

  49. Richard, A., Roszypal, C., Mercadier, J., Banks, D.A., Cuney, M., Boiron, M.-C., and Cathelineau, M., Giant uranium deposits formed from exceptionally uranium-rich acidic brines, Nature Geoscience, 2012, vol. 5, pp. 142–146.

    Article  Google Scholar 

  50. Rybalov, B.L. and Omel’yanenko, B.I., Istochniki rudnogo veshchestva endogennykh uranovykh mestorozhdenii (Ore Sources of Endogenous Uranium Deposits), Moscow: Nauka, 1989.

  51. Shatkov G.A. Streltsovka type of uranium deposits, Reg. Geol. Metall., 2015. no. 63. pp. 85–96.

  52. Shatkov G.A. Krasnokamensk type of uranium deposits as the most important reserve of industrial uranium mineralization of the Streltsovsky ore cluster, Reg. Geol. Metall., 2017, no. 69, pp. 88–95.

  53. Shatkov G.A. Soloviev N.S., Shatkova L.N. et al. The main regularities of the development of the Mongol-Priargun belt and the peculiarities of the chemistry of volcanic rocks, in Geologiya i mineraly MNR (Geology and Minerals of the MNR), Issue 1, Moscow: Nedra, 1980, pp. 35–55.

  54. Shatkova, L.N. and Shatkov, G.A., On possible source of ore matter of the uranium–fluorite deposits, Geology of Ore Deposits, 1973, vol. 15, no. 4, pp. 36–43.

    Google Scholar 

  55. Skirrow, R.G., Jaireth, S., Huston, D.L., Bastrakov, E.N., Schofield, A., van der Wielen S.E., and Barnicoat, A.C., Uranium Mineral Systems: Processes, Exploration Criteria and a New Deposit Framework, Geoscience Australia Record, 2009, vol. 20.

    Google Scholar 

  56. Tarkhanov A.V. and Bugrieva E.P. World’s largest uranium deposits, Miner. Syr., no. 27, Moscow: VIMS, 2012.

    Google Scholar 

  57. Uranium 2018: Resources, Production and Demand, A Joint Report by the Nuclear Energy Agency, Organization for Economic Co-operation and Development (OECD-NEA) and International Atomic Energy Agency (IAEA), NEA no. 743, OECD, 2018.

  58. Uranovye i molibden-uranovye mestorozhdeniya v oblastyakh razvitiya kontinentalnogo vnutrikorovogo magmatizma: geologiya, geodinamicheskie i fiziko-khimicheskie usloviya formirovaniya (Uranium and Molybdenum-Uranium Deposits in Areas of Development of Continental Intracrustal Magmatism: Geology, Geodynamic and Physico-Chemical Conditions of Formation), Moscow: IPE RAS-IGEM RAS, 2012.

  59. Vishniakov V.E. Structural and hydrodynamic conditions of formation of deposits of the Streltsovka ore field, Mater. Geol. Uran. Mestor., vol. 93, pp. 8–14.

  60. Wohletz, K. and Heiken, G., Volcanology and Geothermal Energy, Berkeley: University of California Press, 1992.

    Google Scholar 

  61. Zielinski, R.A., Volcanic rocks as sources of uranium, in Uranium Deposits in Volcanic Rocks, Vienna: IAEA, 1985, pp. 83–95.

    Google Scholar 

  62. Walter, T.R. and Troll, V.R., Formation of caldera periphery faults: an experimental study, Bull. Volcanol., 2001, no. 63, pp. 191–203.

Download references

ACKNOWLEDGMENTS

The research was carried out at the expense of the Ministry of Science and Higher Education of the Russian Federation (grant No. 13.1902.21.0018 “Fundamental problems of the development of the mineral resources base for the high-tech industry and energy in Russia”, agreement no. 075-15-2020-802).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Petrov, A. A. Pek or V. I. Malkovsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, V.A., Pek, A.A. & Malkovsky, V.I. Uranium Sources and Fluid Transport in Volcanic Mineralized Systems: an Example of Streltsovka Caldera, Russia with Reflection on Dornot, Mongolia. J. Volcanolog. Seismol. 16, 472–497 (2022). https://doi.org/10.1134/S0742046322060045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0742046322060045

Keywords:

Navigation