Skip to main content
Log in

Heat Resistance and Electrophysical Characteristics of Polyheteroarylenes and Ferroelectric–Polymer Film Composites Based on Them

  • Macromolecular Compounds and Polymeric Material
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Structurally related poly(amido-o-hydroxy amides) derived from 5,5-methylenebis(2-aminophenol) with tetramethylsiloxane and heteroaromatic (benzoxazole and benzotriazole) fragments incorporated in the second amine component or formed by polyheterocyclization of the corresponding prepolymers were prepared. The effect of modifying fragments introduced into the base poly(o-hydroxy amide) on the heat resistance of powders and films and of films of photosensitive compounds based on the synthesized polymers with the naphthoquinone diazide component was analyzed. The electrophysical parameters of the polymer films and film composites with a nanodispersed ferroelectric filler, (PZT: ceramic powder with the composition Pb0.81Sr0.04Na0.075Bi0.075(Zr0.58 Ti0.42)O3, Russian brand PZT-1), prepared on the basis of modified polymer binders, were determined. Introduction of 20 mol % sulfur-containing fragments into the polymer binder ensures a 50–65˚C increase in the heat resistance for all types of films without increasing the level of the dielectric loss for the composite coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Barber, P., Balasubramanian, Sh., Anguchamy, Y., Gong, Sh., Wibowo, A., Gao, H., Ploehn, H.J., and Loye, H.C., Materials, 2009, vol. 2, no. 4, pp. 1697–1733. https://doi.org/10.3390/ma2041697

    Article  CAS  PubMed Central  Google Scholar 

  2. Singh, P., Borkar, H., Singh, B.P., Singh, V.N., and Kumar, A., AIP Adv., 2014, vol. 4, no. 087117, pp. 1–11. https://doi.org/10.1063/1.4892961

    Article  CAS  Google Scholar 

  3. Tanaka, T., IEEE Trans. Dielectr. Electr. Insul., 2005, vol. 12, no. 5, pp. 914–928. https://doi.org/10.1109/TDEI.2005.1522186

    Article  CAS  Google Scholar 

  4. Khana, M.N., Jelania, N., Lib, Ch., and Khaliq, J., Ceram. Int., 2017, vol. 43, no. 4, pp. 3923–3926. https://doi.org/10.1016/j.ceramint.2016.12.061

    Article  CAS  Google Scholar 

  5. Goyal, R.K., Katkade, S.S., Mule, D.M., Composites, Part B, 2013, vol. 44, no. 1, pp. 128–132. https://doi.org/10.1016/j.compositesb.2012.06.019

    Article  CAS  Google Scholar 

  6. Shafee, E.E. and Behery, S.M., Mater. Chem. Phys., 2012, vol. 132, nos. 2–3, pp. 740–746. https://doi.org/10.1016/j.matchemphys.2011.12.005

    Article  CAS  Google Scholar 

  7. Seol, J.-H., Lee, J.S., Ji, H.-N., Ok, Y.-P., Kong, G.P., Kim, K.-S., Kim, Ch.Y., and Tai, W.P., Ceram. Int., 2012, vol. 38, no. 1, pp. 263–266. https://doi.org/10.1016/j.ceramint.2011.04.097

    Article  CAS  Google Scholar 

  8. Kim, J.Y., Kim, H., Kim, T., Yu, S., Suk, J.W., Jeong, T., Song, S., Bae, M.J., Han, I., Jung, D., and Park, S.H., J. Mater. Chem. C, 2013, vol. 1, no. 33, pp. 5078–5083. https://doi.org/10.1039/C3TC30767K

    Article  CAS  Google Scholar 

  9. Kumar, P., Mishra, P., and Sonia, S., J. Inorg. Organomet. Polym., 2012, vol. 23, no. 3, pp. 539–545. https://doi.org/10.1007/s10904-012-9809-2

    Article  CAS  Google Scholar 

  10. Mendes, S.F., Costa, C.M., Caparros, C., Sencadas, V., and Lanceros-Mendez, S., J. Mater. Sci., 2012, vol. 47, no. 3, pp. 1378–1388. https://doi.org/10.1007/s10853-011-5916-7

    Article  CAS  Google Scholar 

  11. Omote, T., Photosensitive Polyimides: Molecular Design and Applications, Ghosh, M.K. and Mittal, K.L., Eds., New York: Marcel Dekker, 1996

    Google Scholar 

  12. Lebedeva, G.K., Sokolova, I.M., Rudaya, L.I., Andreeva, L.N., Ziminov, A.V., Nasledov, D.G., Marfichev, A.Yu., Chigirev, D.A., Ramsh, S.M., and Shamanin, V.V., Izv. Sankt-Peterb. Gos. Tekhnol. Inst. (Tekh. Univ.), 2014, vol. 49, no. 23, pp. 19–22.

    Google Scholar 

  13. Maier, G., Prog. Polym. Sci., 2001, vol. 26, pp. 3–65. https://doi.org/10.1016/S0079-6700(00)00043-5

    Article  CAS  Google Scholar 

  14. Jin, X.Z. and Ishii, H., J. Photopolym. Sci. Technol., 2004.,V. 17, no. 2, pp. 201–206. https://doi.org/10.2494/photopolymer.17.201

    Article  Google Scholar 

  15. Lebedeva, G.K., Bazhenova, A.S., Rudaya, L.I., Gofman, I.V., Marfichev, A.Yu., Bol’shakov, M.N., Sokolova, I.M., Chigirev, D.S., Ramsh, S.M., and Shamanin, V.V., Russ. J. Appl. Chem., 2016, vol. 89, no. 10, pp. 1647–1654. https://doi.org/10.1134/S107042721610013X

    Article  CAS  Google Scholar 

  16. Patent RU Publ. 2012.

  17. Afanas’ev, V.P., Bol’shakov, M.N., Kastro, R.A., Lebedeva, G.K., Marfichev, A.Yu., Sokolova, I.M., Rudaya, L.I., Chigirev, D.A., and Shamanin, V.V., Izv. Sankt-Peterb. Gos. Tekhnol. Inst. (Tekh. Univ.), 2012, vol. 42, no. 16, pp. 72–77.

    Google Scholar 

  18. Bühler, K.U., Spezialplaste, Berlin: Akademie, 1978.

    Google Scholar 

  19. Patent RU Publ. 2010.

  20. Combs, D.W., Rampulla, M.S., Demers, J.P., Falotico, R., and Moore, J.B., J. Med. Chem., 1992, vol. 35, no. 1, pp. 172–176. https://doi.org/10.1021/jm00079a023

    Article  CAS  PubMed  Google Scholar 

  21. Patent US Publ. 1976.

  22. Mukhin, N., Afanasjev, V., Sokolova, I., Chigirev, D., Kastro, R., Rudaja, L., Lebedeva, G., Oseev, A., and Tumarkin, A., Materials, 2018, vol. 11, no. 8, pp. 1439–1447. https://doi.org/10.3390/ma11081439

    Article  CAS  PubMed Central  Google Scholar 

  23. Shagaiko, Yu.V., Lebedeva, G.K., Bol’shakov, M.N., Marfichev, A.Yu., Rudaya, L.I., and Ramsh, S.M., Izv. Sankt-Peterb. Gos. Tekhnol. Inst. (Tekh. Univ.), 2017, vol. 67, no. 41, pp. 59–62.

    Google Scholar 

  24. Andrianov, K.A., Kremniiorganicheskie soedineniya (Organosilicon Compounds), Moscow: Goskhimizdat, 1955.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Rudaya.

Ethics declarations

ACKNOWLEDGMENTS

The authors are grateful to Cand. Sci. (Phys.-Math.) I.V. Gofman for the assistance in performing thermal gravimetric analysis of the polymers.

FUNDING

The study was supported by the Ministry of Education and Science of the Russian Federation (government assignment nos. 10.7608.2017/8.9 and 3.3990.2017/4.6).

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chigirev, D.A., Bol’shakov, M.N., Lebedeva, G.K. et al. Heat Resistance and Electrophysical Characteristics of Polyheteroarylenes and Ferroelectric–Polymer Film Composites Based on Them. Russ J Appl Chem 93, 188–196 (2020). https://doi.org/10.1134/S1070427220020056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220020056

Keywords

Navigation