Skip to main content
Log in

Flow Structure and Pressure Oscillations during the Interaction of a Supersonic Underexpanded Gas Jet with a Tubular Cavity

  • GASES AND LIQUIDS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Supersonic jets are widely used in devices based on a self-oscillation process emerging during the interaction of a gas flow with tubular cavities (gas-jet acoustic emitters). We analyze the mechanisms for sustaining undamped pulsations of pressure and determine the flow field in a tubular cavity during the interaction of an underexpanded supersonic jet with it. We consider the physical pattern of the flow in the cavity of a gas-jet emitter, demonstrate the existence of odd longitudinal modes, and propose wave diagrams for describing the flow in odd longitudinal modes. Wave diagrams are constructed based on analysis of signals from piezoelectric sensors detecting pressure pulsations in a tubular cavity. The flow parameters in the tubular cavity in the longitudinal modes are calculated using the flow velocity–velocity of sound diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. V. N. Emelyanov, I. V. Teterina, K. N. Volkov, and A. U. Garkushev, Acta Astronaut. 135, 161 (2017).

    Article  ADS  Google Scholar 

  2. V. G. Dulov and G. A. Luk’yanov, Gas Dynamics of Outflow Processes (Nauka, Novosibirsk, 1984) [in Russian].

    MATH  Google Scholar 

  3. G. Raman and K. Srinivasan, Progr. Aerosp. Sci. 45 (4), 97 (2009).

    Article  ADS  Google Scholar 

  4. V. M. Boiko, A. V. Dostovalov, V. I. Zapryagaev, I. N. Kavun, N. P. Kiselev, and A. A. Pivovarov, Uch. Zap. TsAGI 41 (2), 44 (2010).

    Google Scholar 

  5. K.N. Volkov, V.N. Emelyanov, and V.A. Zazimko, Turbulent Jets — Statistical Models and Large Eddy Simulation (Fizmatlit, Moscow, 2013) [in Russin].

    Google Scholar 

  6. C. Chin, M. Li, C. Harkin, T. Rochwerger, L. Chan, and A. Ooi, J. Fluids Eng. 135 (3), 031202 (2013).

    Article  Google Scholar 

  7. V. Zapryagaev, N. Kiselev, and D. Gubanov, Aerospace 5 (60), 18 (2018).

    Article  Google Scholar 

  8. O. V. Bocharova and M. G. Lebedev, Russ. J. Phys. Chem. B 5 (4), 589 (2011).

    Article  Google Scholar 

  9. O. V. Bocharova and M. G. Lebedev, Inzh. Zh.: Nauka i Innovatsii, No. 9, 1 (2018).

    Google Scholar 

  10. B. Afzali and H. Karimi, Proc. Inst. Mech. Eng. Pt. G: J. Aerosp. Eng. 231 (14), 2706 (2016).

    Article  Google Scholar 

  11. E. Brocher, C. Maresca, and M.-H. Bournay, J. Fluid Mech. 43, 369 (1970).

    Article  ADS  Google Scholar 

  12. E. Brocher and E. Duport, AIAA J. 26 (5), 548 (1988).

    Article  ADS  Google Scholar 

  13. C. Braud and A. Dyment, Phys. Fluids 24 (4), 047102 (2012).

    Article  ADS  Google Scholar 

  14. V. Sarohia and L. H. Back, J. Fluid Mech. 94, 649 (1979).

    Article  ADS  Google Scholar 

  15. V. G. Dulov, V. E. Kuz’mina, and E. A. Ugryumov, Self-Oscillating Modes of Interaction of the Jet with Obstacles. Hydroaeromechanics (St. Petersburg Gos. Univ., St. Petersburg, 1999), pp. 74–94 [in Russian].

    Google Scholar 

  16. G. F. Gorshkov and V. N. Uskov, J. Appl. Mech. Tech. Phys. 40 (4), 678 (1999).

    Article  ADS  Google Scholar 

  17. A. L. Adrianov, A. A. Bezrukov, and Yu. A. Gaponenko, J. Appl. Mech. Tech. Phys. 41 (4), 670 (2000).

    Article  ADS  Google Scholar 

  18. V. N. Glaznev and Yu. G. Korobeinikov, J. Appl. Mech. Tech. Phys. 42 (4), 616 (2001).

    Article  ADS  Google Scholar 

  19. A. Dauptain, B. Cuenot, and L. Y. M. Gicquel, AIAA J. 48 (10), 2325 (2010).

    Article  ADS  Google Scholar 

  20. T. B. Davis and R. Kumar, Shock Waves 25 (5), 507 (2015).

    Article  ADS  Google Scholar 

  21. N. J. Hildebrand and J. W. Nichols, Proc. 21st AIAA/CEAS Aeroacoustics Conf., Dallas, TX, June 22–26,2015, AIAA-2015-2212. https://doi.org/10.2514/6.2015-2212

  22. N. Mason-Smith, D. Edgington-Mitchell, N. A. Buchmann, D. R. Honnery, and J. Soria, Shock Waves 25 (6), 611 (2015).

    Article  ADS  Google Scholar 

  23. A. Hamed, K. Das, and D. Basu, Proc. 40nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, January 14–17,2002, AIAA-2002-1118.

  24. T. Handa, H. Miyachi, H. Kakuno, T. Ozaki, and S. Maruyama, AIAA J. 53 (2), 420 (2015).

    Article  ADS  Google Scholar 

  25. K. M. Chung, K. H. Lee, and K. C. Chang, J. Aircr. 53 (5), 1565 (2016).

    Article  Google Scholar 

  26. K. N. Volkov, V. N. Emel’yanov, A. V. Efremov, and A. I. Tsvetkov, Tech. Phys. 65 (5), 703 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Volkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, K.N., Emel’yanov, V.N., Efremov, A.V. et al. Flow Structure and Pressure Oscillations during the Interaction of a Supersonic Underexpanded Gas Jet with a Tubular Cavity. Tech. Phys. 65, 1204–1216 (2020). https://doi.org/10.1134/S1063784220080228

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220080228

Navigation