Skip to main content
Log in

Ab initio simulation of gap discrete breathers in strained graphene

  • Graphenes
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The methods of the density functional theory were used for the first time for the simulation of discrete breathers in graphene. It is demonstrated that breathers can exist with frequencies lying in the gap of the phonon spectrum, induced by uniaxial tension of a monolayer graphene sheet in the “zigzag” direction (axis X), polarized in the “armchair” direction (axis Y). The found gap breathers are highly localized dynamic objects, the core of which is formed by two adjacent carbon atoms located on the Y axis. The atoms surrounding the core vibrate at much lower amplitudes along both the axes (X and Y). The dependence of the frequency of these breathers on amplitude is found, which shows a soft type of nonlinearity. No breathers of this type were detected in the gap induced by stretching along the Y axis. It is shown that the breather vibrations may be approximated by the Morse oscillators, the parameters of which are determined from ab initio calculations. The results are of fundamental importance, as molecular dynamics calculations based on empirical potentials cannot serve as a reliable proof of the existence of breathers in crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Ovchinnikov, Sov. Phys. JETP 24 (2), 394 (1969).

    Google Scholar 

  2. A. S. Dolgov, Sov. Phys. Solid State 28 (3), 507 (1986).

    Google Scholar 

  3. A. Sievers and S. Takeno, Phys. Rev. Lett. 61, 970 (1988).

    Article  ADS  Google Scholar 

  4. S. Flach and A. Gorbach, Phys. Rep. 467, 1 (2007).

    Article  ADS  Google Scholar 

  5. P. Binder, D. Abraimov, A. V. Ustinov, S. Flach, and Y. Zolotaryuk, Phys. Rev. Lett. 84, 745 (2000).

    Article  ADS  Google Scholar 

  6. R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, Phys. Rev. Lett. 83, 2726 (1999).

    Article  ADS  Google Scholar 

  7. M. Sato, B. E. Hubbard, and A. Sievers, Rev. Mod. Phys. 78, 137 (2006).

    Article  ADS  Google Scholar 

  8. N. Boechler, G. Theocharis, S. Job, P. G. Kevrekidis, M. A. Porter, and C. Daraio, Phys. Rev. Lett. 104, 244302 (2010).

    Article  ADS  Google Scholar 

  9. B. I. Swanson, J. A. Brozik, S. P. Love, G. F. Strouse, A. P. Shreve, A. R. Bishop, W.-Z. Wang, and M. I. Salkola, Phys. Rev. Lett. 82, 3288 (1999).

    Article  ADS  Google Scholar 

  10. G. Kalosakas, A. R. Bishop, and A. P. Shreve, Phys. Rev. B: Condens. Matter 66, 094303 (2002).

    Article  ADS  Google Scholar 

  11. D. K. Campbell, S. Flach, and Y. S. Kivshar, Phys. Today 57, 43 (2004).

    Article  ADS  Google Scholar 

  12. M. E. Manley, A. Alatas, F. Trouw, B. M. Leu, Y. W. Lynn, Y. Chen, and W. L. Hults, Phys. Rev. B: Condens. Matter 77, 214305 (2008).

    Article  ADS  Google Scholar 

  13. M. E. Manley, A. J. Sievers, J. W. Lynn, S. A. Kiselev, N. I. Agladze, Y. Chen, A. Llobet, and A. Alatas, Phys. Rev. B: Condens. Matter 79, 134304 (2009).

    Article  ADS  Google Scholar 

  14. M. Kempa, P. Ondrejkovic, P. Bourges, Y. Ollivier, S. Rols, Y. Kuldâ, S. Marguerou, and Y. Hlinka, J. Phys.: Condens. Matter 25, 055403 (2013).

    ADS  Google Scholar 

  15. A. J. Sievers, M. Sato, J. B. Page, and T. Rossler, Phys. Rev. B: Condens. Matter 88, 104305 (2013).

    Article  ADS  Google Scholar 

  16. S. A. Kiselev and A. J. Sievers, Phys. Rev. B: Condens. Matter 55, 5755 (1997).

    Article  ADS  Google Scholar 

  17. L. Z. Khadeeva and S. V. Dmitriev, Phys. Rev. B: Condens. Matter 81, 214306 (2010).

    Article  ADS  Google Scholar 

  18. Yu. A. Baimova, S. V. Dmitriev, A. A. Kistanov, and A. I. Potekaev, Russ. Phys. J. 56 (2), 180 (2013).

    Article  Google Scholar 

  19. M. Haas, V. Hizhnyakov, A. Shelkan, M. Klopov, and A. Y. Sievers, Phys. Rev. B: Condens. Matter 84, 144303 (2011).

    Article  ADS  Google Scholar 

  20. R. T. Murzaev, A. A. Kistanov, V. I. Dubinko, D. A. Terentyev, and S. V. Dmitriev, Comput. Mater. Sci. 98, 88 (2015).

    Article  Google Scholar 

  21. T. Dauxois, A. Litvak-Hinenzon, R. MacKay, and A. Spanoudaki, Adv. Ser. Nonlinear Dyn. 22, 329 (2000).

    Google Scholar 

  22. N. N. Medvedev, M. D. Starostenkov, and M. E. Manley, J. Appl. Phys. 114, 213506 (2013).

    Article  ADS  Google Scholar 

  23. L. Z. Khadeeva, S. V. Dmitriev, and Yu. S. Kivshar’, JETP Lett. 94 (7), 539 (2011).

    Article  ADS  Google Scholar 

  24. E. A. Korznikova, J. A. Baimova, and S. V. Dmitriev, Europhys. Lett. 102, 60004 (2013).

    Article  ADS  Google Scholar 

  25. J. A. Baimova, S. V. Dmitriev, and K. Zhou, Europhys. Lett. 100, 36005 (2012).

    Article  ADS  Google Scholar 

  26. N. K. Voulgarakis, G. Hadjisavvas, P. C. Kelires, and G. P. Tsironis, Phys. Rev. B: Condens. Matter 69, 113201 (2004).

    Article  ADS  Google Scholar 

  27. G. M. Chechin, S. V. Dmitriev, I. P. Lobzenko, and D. S. Ryabov, Phys. Rev. B: Condens. Matter 90, 045432 (2014).

    Article  ADS  Google Scholar 

  28. B. Liu, J. A. Baimova, S. V. Dmitriev, X. Wang, H. Zhu, and K. Zhou, J. Phys. D: Appl. Phys. 46, 305302 (2013).

    Article  Google Scholar 

  29. W. Kohn, Rev. Mod. Phys. 71 (5), 1253 (1999).

    Article  ADS  Google Scholar 

  30. X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côte, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, et al., Comput. Phys. Commun. 180, 2582 (2009).

    Article  ADS  Google Scholar 

  31. wwwabinitorg.

  32. Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, ACS Nano 2, 2301 (2008).

    Article  Google Scholar 

  33. R. M. Ribeiro, V. M. Pereira, N. M. R. Peres, P. R. Briddon, and A. H. Castro Neto, New J. Phys. 11, 115002 (2009).

    Article  ADS  Google Scholar 

  34. M. Mohr, K. Papagelis, J. Maultzsch, and C. Thomsen, Phys. Rev. B: Condens. Matter 80, 205410 (2009).

    Article  ADS  Google Scholar 

  35. F. Liu, P. Ming, and L. Li, Phys. Rev. B: Condens. Matter 76, 064120 (2007).

    Article  ADS  Google Scholar 

  36. J. A. Baimova, S. V. Dmitriev, K. Zhou, and A. V. Savin, Phys. Rev. B: Condens. Matter 86, 035427 (2012).

    Article  ADS  Google Scholar 

  37. Y. Yamayose, Y. Kinoshita, Y. Doi, A. Nakatani, and T. Kitamura, Europhys. Lett. 80, 40008 (2007).

    Article  ADS  Google Scholar 

  38. Y. Doi and A. Nakatani, J. Solid Mech. Mater. Eng. 6, 71 (2012).

    Article  Google Scholar 

  39. D. W. Brenner, Phys. Rev. B: Condens. Matter 42, 9458 (1990).

    Article  ADS  Google Scholar 

  40. J. L. Marin and S. Aubry, Nonlinearity 9, 1501 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  41. G. M. Chechin, G. S. Dzhelauhova, and E. A. Mehonoshina, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 74, 036608 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  42. G. M. Chechin and G. S. Dzhelauhova, J. Sound Vib. 322, 490 (2009).

    Article  ADS  Google Scholar 

  43. A. V. Savin, Yu. S. Kivshar, and B. Hu, Phys. Rev. B: Condens. Matter 82, 195422 (2010).

    Article  ADS  Google Scholar 

  44. G. M. Chechin and I. P. Lobzenko, Lett. Mater. 4 (4), 226 (2014).

    Google Scholar 

  45. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  46. G. S. Bezuglova, G. M. Chechin, and P. P. Goncharov, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 84, 036606 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Lobzenko.

Additional information

Original Russian Text © I.P. Lobzenko, G.M. Chechin, G.S. Bezuglova, Yu.A. Baimova, E.A. Korznikova, S.V. Dmitriev, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 3, pp. 616–622.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobzenko, I.P., Chechin, G.M., Bezuglova, G.S. et al. Ab initio simulation of gap discrete breathers in strained graphene. Phys. Solid State 58, 633–639 (2016). https://doi.org/10.1134/S1063783416030203

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416030203

Keywords

Navigation