Skip to main content
Log in

Discrete breathers in graphane: Effect of temperature

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The discrete breathers in graphane in thermodynamic equilibrium in the temperature range 50–600 K are studied by molecular dynamics simulation. A discrete breather is a hydrogen atom vibrating along the normal to a sheet of graphane at a high amplitude. As was found earlier, the lifetime of a discrete breather at zero temperature corresponds to several tens of thousands of vibrations. The effect of temperature on the decay time of discrete breathers and the probability of their detachment from a sheet of graphane are studied in this work. It is shown that closely spaced breathers can exchange energy with each other at zero temperature. The data obtained suggest that thermally activated discrete breathers can be involved in the dehydrogenation of graphane, which is important for hydrogen energetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  2. L. A. Fal’kovskii, J. Exp. Theor. Phys. 106, 575 (2008).

    Article  ADS  Google Scholar 

  3. L. A. Fal’kovskii, J. Exp. Theor. Phys. 115, 496 (2012).

    Article  ADS  Google Scholar 

  4. Yu. A. Baimova, S. V. Dmitriev, A. V. Savin, and Yu. S. Kivshar’, Phys. Solid State 54, 866 (2012).

    Article  ADS  Google Scholar 

  5. S. V. Dmitriev, Yu. A. Baimova, A. B. Savin, and Yu. S. Kivshar’, JETP Lett. 93, 571 (2011).

    Article  ADS  Google Scholar 

  6. A. A. Greshnov, JETP Lett. 100, 518 (2014).

    Article  ADS  Google Scholar 

  7. L. A. Chernozatonskii, A. A. Artyukh, and D. G. Kvashnin, JETP Lett. 95, 266 (2012).

    Article  ADS  Google Scholar 

  8. G. Stan and M. W. Cole, J. Low Temp. Phys. 110, 539 (1998).

    Article  ADS  Google Scholar 

  9. K. A. Williams and P. C. Eklund, Chem. Phys. Lett. 320, 352 (2000).

    Article  ADS  Google Scholar 

  10. S. M. Lee and Y. H. Lee, Appl. Phys. Lett. 76, 2877 (2000).

    Article  ADS  Google Scholar 

  11. G. E. Froudakis, Mater. Today 14, 324 (2011).

    Article  Google Scholar 

  12. Yu. S. Nechaev and N. T. Veziroglu, Int. J. Phys. Sci. 10, 54 (2015).

    Article  Google Scholar 

  13. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, et al., Science 323, 610 (2009).

    Article  ADS  Google Scholar 

  14. B. Liu, J. A. Baimova, S. V. Dmitriev et al., J. Phys. D 46, 305302 (2013).

    Article  Google Scholar 

  15. G. M. Chechin, S. V. Dmitriev, I. P. Lobzenko, and D. S. Ryabov, Phys. Rev. B 90, 045432 (2014).

    Article  ADS  Google Scholar 

  16. J. A. Baimova, S. V. Dmitriev, and K. Zhou, Europhys. Lett. 100, 36005 (2012).

    Article  ADS  Google Scholar 

  17. Y. Yamayose, Y. Kinoshita, Y. Doi, et al., Europhys. Lett. 80, 4008 (2007).

    Article  Google Scholar 

  18. L. Z. Khadeeva, C. V. Dmitriev, and Yu. S. Kivshar’, JETP Lett. 94, 539 (2011).

    Article  ADS  Google Scholar 

  19. T. Shimada, D. Shirasaki, and T. Kitamura, Phys. Rev. B 81, 035401 (2010).

    Article  ADS  Google Scholar 

  20. E. A. Korznikova, J. A. Baimova, and S. V. Dmitriev, Europhys. Lett. 102, 60004 (2013).

    Article  ADS  Google Scholar 

  21. E. A. Korznikova, A. V. Savin, Yu. A. Baimova, S. V. Dmitriev, and R. R. Mulyukov, JETP Lett. 96, 222 (2012).

    Article  ADS  Google Scholar 

  22. J. A. Baimova, E. A. Korznikova, I. P. Lobzenko, and S. V. Dmitriev, Rev. Adv. Mater. Sci. 42, 68 (2015).

    Google Scholar 

  23. Z. Q. Luo, T. Yu, K.-J. Kim, et al., ACS Nano 3, 1781 (2009).

    Article  Google Scholar 

  24. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  25. S. Stuart, A. Tutein, and J. Harrison, J. Chem. Phys. 112, 6472 (2000).

    Article  ADS  Google Scholar 

  26. J. A. Baimova, B. Liu, and K. Zhou, Lett. Mater. 4, 96 (2014).

    Google Scholar 

  27. Q. X. Pei, Y. W. Zhang, and V. B. Shenoy, Carbon 48, 898 (2010).

    Article  Google Scholar 

  28. V. Varshney, S. S. Patnaik, A. K. Roy, et al., ACS Nano 4, 1153 (2010).

    Article  Google Scholar 

  29. N. Wei, L. Q. Xu, H. Q. Wang, and J. C. Zheng, Nanotechnology 22, 105705 (2011).

    Article  ADS  Google Scholar 

  30. J. D. Jones, W. D. Hoffmann, A. V. Jesseph, et al., Appl. Phys. Lett. 97, 233104 (2010).

    Article  ADS  Google Scholar 

  31. M. V. Ivanchenko, O. I. Kanakov, V. D. Shalfeev, and S. Flach, Physica D 198, 120 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Eleftheriou and S. Flach, Physica D 202, 142 (2005).

    Article  ADS  Google Scholar 

  33. L. Z. Khadeeva and S. V. Dmitriev, Phys. Rev. B 84, 144304 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Baimova.

Additional information

Original Russian Text © J.A. Baimova, R.T. Murzaev, I.P. Lobzenko, S.V. Dmitriev, Kun Zhou, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 149, No. 5, pp. 1005–1010.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baimova, J.A., Murzaev, R.T., Lobzenko, I.P. et al. Discrete breathers in graphane: Effect of temperature. J. Exp. Theor. Phys. 122, 869–873 (2016). https://doi.org/10.1134/S1063776116040014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116040014

Navigation