Skip to main content
Log in

Deformation properties of lead isotopes

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF0 Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes. The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, 180Pb and 184Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF0 functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF0 functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron-rich lead isotopes undergo deformations, but the size of this region is substantially different for the different functionals being considered. Once again, it is maximal for the HFB-17 and HFB-27 functionals, is substantially narrower for the FaNDF0 functional, and is still narrower for the SKM* and SLy4 functionals. The two-neutron drip line proved to be A 2ndrip = 266 for all of the EDF versions considered here, with the exception of SKM*, for which it is shifted to A 2ndrip (SKM*) = 272.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bohr and B. Mottelson, Nuclear Structure, Vol. 1: Single-Particle Motion (Benjamin, New York, 1969).

    Google Scholar 

  2. A. Bohr and B. Mottelson, Nuclear Structure, Vol. 2: Nuclear Deformations (Benjamin, New York, 1974).

    Google Scholar 

  3. D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).

    Article  ADS  Google Scholar 

  4. J. Dechargéand D. Gogny, Phys. Rev. C 21, 1568 (1980).

    Article  ADS  Google Scholar 

  5. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  6. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. Lett. 102, 152503 (2009).

    Article  ADS  Google Scholar 

  8. S. Goriely, http://www-astro.ulb.ac.be/bruslib/nucdata/

  9. J. Bartel, P. Quentin, M. Brack, et al., Nucl. Phys. A 386, 79 (1982).

    Article  ADS  Google Scholar 

  10. E. Chabanat, P. Bonche, P. Haensel, et al., Nucl. Phys. A 635, 231 (1998).

    Article  ADS  Google Scholar 

  11. M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).

    Article  ADS  Google Scholar 

  12. M. Kortelainen, J. McDonnell, W. Nazarewicz, et al., Phys. Rev. C 85, 024304 (2012).

    Article  ADS  Google Scholar 

  13. P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).

    Article  ADS  Google Scholar 

  14. M. Baldo, C. Maieron, P. Schuck, and X. Viñas, Nucl. Phys. A 736, 241 (2004).

    Article  ADS  Google Scholar 

  15. M. Baldo, P. Schuck, and X. Viñas, Phys. Lett. B 663, 390 (2008).

    Article  ADS  Google Scholar 

  16. M. Baldo, L. M. Robledo, P. Schuck, and X. Viñas, Phys. Rev. C 87, 064305 (2013).

    Article  ADS  Google Scholar 

  17. V. A. Khodel and E. E. Saperstein, Phys. Rep. 92, 183 (1982).

    Article  ADS  Google Scholar 

  18. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1965; Wiley, New York, 1967).

    Google Scholar 

  19. S. A. Fayans and V. A. Khodel, JETP Lett. 17, 444 (1973).

    ADS  Google Scholar 

  20. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei, 2nd ed. (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  21. N. V. Gnezdilov, E. E. Saperstein, and S. V. Tolokonnikov, Europhys. Lett. 107, 62001 (2014).

    Article  ADS  Google Scholar 

  22. N.V. Gnezdilov, E. E. Sapershtein, and S.V. Tolokonnikov, Phys. At. Nucl. 78, 24 (2015).

    Article  Google Scholar 

  23. V. A. Khodel, E. E. Saperstein, and M. V. Zverev, Nucl. Phys. A 465, 397 (1987).

    Article  ADS  Google Scholar 

  24. P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, New York, 1980).

    Book  Google Scholar 

  25. A. V. Smirnov, S. V. Tolokonnikov, and S. A. Fayans, Sov. J. Nucl. Phys. 48, 995 (1988).

    Google Scholar 

  26. D. J. Horen, G. R. Satchler, S. A. Fayans, and E. L. Trykov, Nucl. Phys. A 600, 193 (1996).

    Article  ADS  Google Scholar 

  27. I. N. Borzov, S. A. Fayans, E. Krömer, and D. Zawischa, Z. Phys. A 355, 117 (1996).

    ADS  Google Scholar 

  28. S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000).

    Article  ADS  Google Scholar 

  29. S. V. Tolokonnikov and E. E. Saperstein, Phys. At. Nucl. 73, 1684 (2010).

    Article  Google Scholar 

  30. E. E. Saperstein and S. V. Tolokonnikov, Phys. At. Nucl. 74, 1277 (2011).

    Article  Google Scholar 

  31. I. N. Borzov, E. E. Saperstein, and S.V. Tolokonnikov, Phys. At. Nucl. 71, 469 (2008).

    Article  Google Scholar 

  32. I. N. Borzov, E. E. Saperstein, S. V. Tolokonnikov, et al., Eur. Phys. J. A 45, 159 (2010).

    Article  ADS  Google Scholar 

  33. S. V. Tolokonnikov, S. Kamerdzhiev, S. Krewald, E. E. Saperstein, and D. Voitenkov, Eur. Phys. J. A 48, 70 (2012).

    Article  ADS  Google Scholar 

  34. S. Kamerdzhiev, S. Krewald, S. Tolokonnikov, E. E. Saperstein, and D. Voitenkov, EPJ Web Conf. 38, 10002 (2012).

    Article  Google Scholar 

  35. S. V. Tolokonnikov, S. Kamerdzhiev, D. Voytenkov, S. Krewald, and E. E. Saperstein, Phys. Rev. C 84, 064324 (2011).

    Article  ADS  Google Scholar 

  36. S. V. Tolokonnikov, S. Kamerdzhiev, S. Krewald, E. E. Saperstein, and D. Voitenkov, EPJ Web Conf. 38, 04002 (2012).

    Article  Google Scholar 

  37. N. V. Gnezdilov, I. N. Borzov, E. E. Saperstein, and S. V. Tolokonnikov, Phys. Rev. C 89, 034304 (2014).

    Article  ADS  Google Scholar 

  38. S. V. Tolokonnikov, I. N. Borzov, M. Kortelainen, Yu. S. Lutostansky, and E. E. Saperstein, J. Phys. G 42, 075102 (2015).

    Article  ADS  Google Scholar 

  39. S. A. Fayans, JETP Lett. 68, 169 (1998).

    Article  ADS  Google Scholar 

  40. M. V. Stoitsov, N. Schunck, M. Kortelainen, et al., Comput. Phys. Commun. 184, 1592 (2013).

    Article  ADS  Google Scholar 

  41. M. V. Stoitsov, J. Dobaczewski, W. Nazarewicz, et al., Phys. Rev. C 68, 054312 (2003).

    Article  ADS  Google Scholar 

  42. J. Erler, N. Birge, M. Kortelainen, et al., Nature 486, 509 (2012).

    Article  ADS  Google Scholar 

  43. R. R. Rodrguez-Guzmán, J. L. Egido, and L. M. Robledo, Phys. Rev. C 69, 054319 (2004).

    Article  ADS  Google Scholar 

  44. M. Bender, P. Bonche, T. Duguet, and P.-H. Heenen, Phys. Rev. C 69, 064303 (2004).

    Article  ADS  Google Scholar 

  45. I. Angeli, Recommended Values of Nuclear Charge Radii (2008), http://cdfe.sinp.msu.ru/services/radchart/radhelp.html#rad

    Google Scholar 

  46. Yu. Gangrsky and K. Marinova (2008), http://cdfe.sinp.msu.ru/services/radchart/radhelp. html#rad

  47. Database of the Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics. http://cdfe.sinp.msu.ru/services/radchart/radmain.html

  48. N. J. Stone, At. DataNucl. Data Tables 90, 75 (2005).

    Article  ADS  Google Scholar 

  49. K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).

    Article  ADS  Google Scholar 

  50. R. Julin, K. Helariutta, and M. Muikku, J. Phys. G 27, R109 (2001).

    Article  ADS  Google Scholar 

  51. P. Rahkila, D. G. Jenkins, J. Pakarinen, et al., Phys. Rev. C 82, 011303(R) (2010).

    Article  ADS  Google Scholar 

  52. M. Bender, T. Duguet, and D. Lacroix, Phys. Rev. C 79, 044319 (2009).

    Article  ADS  Google Scholar 

  53. J. M. Yao, M. Bender, and P.-H. Heenen, Phys. Rev. C 87, 034322 (2013).

    Article  ADS  Google Scholar 

  54. M. Bender, T. Cornelius, G. A. Lalazissis, et al., Eur. Phys. J. A 14, 23 (2002).

    ADS  Google Scholar 

  55. K. Heyde, C. de Coster, P. van Duppen, et al., Phys. Rev. C 53, 1035 (1996).

    Article  ADS  Google Scholar 

  56. B. Friedman and V. R. Pandharipande, Nucl. Phys. A 361, 502 (1981).

    Article  ADS  Google Scholar 

  57. J. A. Nolen, and J. P. Schiffer, Ann. Rev. Nucl. Part. Sci. 19, 471 (1969).

    Article  ADS  Google Scholar 

  58. B. A. Brown, Phys. Rev. C 58, 220 (1998).

    Article  ADS  Google Scholar 

  59. G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003).

    Article  ADS  Google Scholar 

  60. M. Dutra, O. Lourenceo, J. S. SáMartins, et al., Phys. Rev. C 85, 035201 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Saperstein.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolokonnikov, S.V., Borzov, I.N., Lutostansky, Y.S. et al. Deformation properties of lead isotopes. Phys. Atom. Nuclei 79, 21–37 (2016). https://doi.org/10.1134/S1063778816010208

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778816010208

Keywords

Navigation