Skip to main content
Log in

Shape evolution of sub-lead neutron-rich nuclei around the neutron shell closure

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Shape transitions in the isotopes of transitional nuclei W, Os, and Pt are studied by using the energy density functional framework rooted in the effective nucleon-nucleon interactions. The UNEDF1 parametrization of the Skyrme energy density functionals along with the Lipkin-Nogami corrections are employed to obtain the potential energy surfaces of the even-even isotopes of these nuclei around the \(N=126\) neutron shell closure. Further, to get more insight into the shape changes, we extract the nucleonic localization functions for selected isotopes. For all three isotopic chains, we observed shape transitions from triaxial deformation to oblate, then spherical ground state for shell-closed isotopes, and finally prolate deformation for highly neutron-rich isotopes. Moreover, we calculate other observables like pairing gaps, two-neutron separation energies, and reduced transition probabilities in support of our predictions based on the potential energy surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited [Authors’ comment: This study is based on the theoretical model. Hence, no experimental data has been listed].

References

  1. R.F. Casten, Nat. Phys. 2, 811 (2006)

    Google Scholar 

  2. P. Cejnar, J. Jolie, R.F. Casten, Rev. Mod. Phys. 82, 2155 (2010)

    ADS  Google Scholar 

  3. F. Iachello, N.V. Zamfir, Phys. Rev. Lett. 92, 212501 (2004)

    ADS  Google Scholar 

  4. R.F. Casten, Prog. Part. Nucl. Phys. 62(1), 183 (2009)

    ADS  Google Scholar 

  5. K. Nomura, N. Shimizu, T. Otsuka, Phys. Rev. Lett. 101, 142501 (2008)

    ADS  Google Scholar 

  6. N. Alkhomashi, P.H. Regan, Z. Podolyák et al., Phys. Rev. C 80, 064308 (2009)

    ADS  Google Scholar 

  7. Z. Podolyák, P. Regan, M. Pfützner et al., Phys. Lett. B 491(3), 225 (2000)

    ADS  Google Scholar 

  8. A. Rohilla, C.K. Gupta, R.P. Singh, S. Muralithar et al., Eur. Phys. J. A 53(4), 64 (2017)

    ADS  Google Scholar 

  9. P.R. John, V. Modamio, J.J. Valiente-Dobón et al., Phys. Rev. C 90, 021301 (2014)

    ADS  Google Scholar 

  10. S.K. Chamoli, A. Rohilla, C.K. Gupta, R.P. Singh, S. Muralithar, S. Chakraborty, H.P. Sharma, A. Kumar, I.M. Govil, D.C. Biswas, Acta Phys. Pol. B 48, 337 (2017)

    ADS  Google Scholar 

  11. P.R. John, J.J. Valiente-Dobón, D. Mengoni et al., Phys. Rev. C 95, 064321 (2017)

    ADS  Google Scholar 

  12. M. Khalil, A.M. Khalaf, M. Kotb, M.D. Okasha, Nucl. Phys. A 991, 121610 (2019)

    Google Scholar 

  13. K. Nomura, T. Nikšić, D. Vretenar, Phys. Rev. C 94, 064310 (2016)

    ADS  Google Scholar 

  14. K. Nomura, T. Otsuka, R. Rodríguez-Guzmán et al., Phys. Rev. C 83, 054303 (2011)

    ADS  Google Scholar 

  15. K. Nomura, T. Otsuka, R. Rodríguez-Guzmán et al., Phys. Rev. C 84, 054316 (2011)

    ADS  Google Scholar 

  16. K. Nomura, T. Otsuka, R. Rodríguez-Guzmán, L.M. Robledo, P. Sarriguren, Phys. Rev. C 83, 014309 (2011)

    ADS  Google Scholar 

  17. I.O. Morales, A. Frank, C.E. Vargas, P.V. Isacker, Phys. Rev. C 78, 024303 (2008)

    ADS  Google Scholar 

  18. K. Nomura, T. Nikšić, D. Vretenar, Phys. Rev. C 96, 014304 (2017)

    ADS  Google Scholar 

  19. K. Nomura, T. Nikšić, D. Vretenar, Phys. Rev. C 102, 034315 (2020)

    ADS  Google Scholar 

  20. R.F. Casten, E.A. McCutchan, J. Phys. G 34(7), R285 (2007)

    ADS  Google Scholar 

  21. L.M. Robledo, R.R. Rodríguez-Guzmán, P. Sarriguren, Phys. Rev. C 78, 034314 (2008)

    ADS  Google Scholar 

  22. T.R. Rodríguez, J. Luis Egido, Phys. Lett. B 663(1), 49 (2008)

  23. J. Jolie, A. Linnemann, Phys. Rev. C 68, 031301 (2003)

    ADS  Google Scholar 

  24. Y. Zhang, F. Pan, Y.X. Liu, Y.A. Luo, J.P. Draayer, Phys. Rev. C 85, 064312 (2012)

    ADS  Google Scholar 

  25. D. Bonatsos, I.E. Assimakis, Minkov, et al., Phys. Rev. C 95, 064326 (2017)

  26. A. Martinou, D. Bonatsos, K.E. Karakatsanis et al., Eur. Phys. J. A 57(3), 83 (2021)

    ADS  Google Scholar 

  27. A. Ansari, Phys. Rev. C 33, 321 (1986)

    ADS  Google Scholar 

  28. P. Sarriguren, R. Rodríguez-Guzmán, L.M. Robledo, Phys. Rev. C 77, 064322 (2008)

    ADS  Google Scholar 

  29. L.M. Robledo, R. Rodríguez-Guzmán, P. Sarriguren, J. Phys. G 36(11), 115104 (2009)

    ADS  Google Scholar 

  30. R. Rodríguez-Guzmán, P. Sarriguren, L.M. Robledo, J.E. García-Ramos, Phys. Rev. C 81, 024310 (2010)

    ADS  Google Scholar 

  31. M. Bender, P.H. Heenen, P.G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)

    ADS  Google Scholar 

  32. M. Stoitsov, J. Dobaczewski, W. Nazarewicz, P. Borycki, Int. J. Mass Spectrom. 251(2), 243 (2006)

    Google Scholar 

  33. S.S. Nayak, G. Mukherjee, Nucl. Phys. A 1023, 122449 (2022)

    Google Scholar 

  34. T. Nikšić, D. Vretenar, G.A. Lalazissis, P. Ring, Phys. Rev. Lett. 99, 092502 (2007)

    ADS  Google Scholar 

  35. Z. Shi, Z.P. Li, Phys. Rev. C 97, 034329 (2018)

    ADS  Google Scholar 

  36. Y. Fu, H. Tong, X.F. Wang et al., Phys. Rev. C 97, 014311 (2018)

    ADS  Google Scholar 

  37. J. Xiang, Z.P. Li, W.H. Long et al., Phys. Rev. C 98, 054308 (2018)

    ADS  Google Scholar 

  38. S. Nandi, G. Mukherjee, A. Dhal, R. Banik, S. Bhattacharya, S. Basu, S. Dar, S. Bhattacharyya, C. Bhattacharya, S. Kundu, D. Paul, S. Rajbanshi, S. Chatterjee, S. Das, S. Samanta, R. Raut, S.S. Ghugre, H. Pai, S. Ali, S. Biswas, A. Goswami, Phys. Rev. C 105, 034336 (2022)

    ADS  Google Scholar 

  39. N. Ashok, A. Joseph, Int. J. Mod. Phys. E 28(10), 1950093 (2019)

    ADS  Google Scholar 

  40. M. Kortelainen, J. McDonnell, W. Nazarewicz, P.G. Reinhard, J. Sarich, N. Schunck, M.V. Stoitsov, S.M. Wild, Phys. Rev. C 85, 024304 (2012)

    ADS  Google Scholar 

  41. P.G. Reinhard, J.A. Maruhn, A.S. Umar, V.E. Oberacker, Phys. Rev. C 83, 034312 (2011)

    ADS  Google Scholar 

  42. C.L. Zhang, B. Schuetrumpf, W. Nazarewicz, Phys. Rev. C 94, 064323 (2016)

    ADS  Google Scholar 

  43. J. Sadhukhan, C. Zhang, W. Nazarewicz, N. Schunck, Phys. Rev. C 96, 061301 (2017)

    ADS  Google Scholar 

  44. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, 1980)

  45. J. Dobaczewski, P. Olbratowski, Comput. Phys. Commun. 158(3), 158 (2004)

    ADS  Google Scholar 

  46. J. Sadhukhan, J. Dobaczewski, W. Nazarewicz, J.A. Sheikh, A. Baran, Phys. Rev. C 90, 061304 (2014)

    ADS  Google Scholar 

  47. M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz et al., Phys. Rev. C 68, 054312 (2003)

    ADS  Google Scholar 

  48. N. López Vaquero, T.R. Rodriguez, J.L. Egido, Phys. Lett. B 704(5), 520 (2011)

  49. N.L. Vaquero, J.L. Egido, T.R. Rodríguez, Phys. Rev. C 88, 064311 (2013)

    ADS  Google Scholar 

  50. J. Dobaczewski, W. Nazarewicz, M.V. Stoitsov, Eur. Phys. J. A 15, 21 (2002)

    ADS  Google Scholar 

  51. J. Terasaki, H. Flocard, P.H. Heenen, P. Bonche, Nucl. Phys. A 621(3), 706 (1997)

    ADS  Google Scholar 

  52. N. Schunck, J.D. McDonnell, J. Sarich, S.M. Wild, D. Higdon, Jour. Phys. G 42(3), 034024 (2015)

    ADS  Google Scholar 

  53. M. Kortelainen, J. McDonnell, W. Nazarewicz et al., Phys. Rev. C 85, 024304 (2012)

    ADS  Google Scholar 

  54. N. Schunck, J. Dobaczewski, W. Satuła et al., Comp. Phys. Comm. 216, 145 (2017)

    ADS  Google Scholar 

  55. S. Mizutori, J. Dobaczewski, G.A. Lalazissis et al., Phys. Rev. C 61, 044326 (2000)

    ADS  Google Scholar 

  56. L. Lühmann, M. Debray, K.P. Lieb, W. Nazarewicz, B. Wörmann, J. Eberth, T. Heck, Phys. Rev. C 31, 828 (1985)

    ADS  Google Scholar 

  57. G. Mukherjee, P. Joshi, R. Bhowmik, S. Roy, S. Dutta, S. Muralithar, R. Singh, Nucl. Phys. A 829(3), 137 (2009)

    ADS  Google Scholar 

  58. T. Nikšić, D. Vretenar, P. Ring, Progress Particle Nucl. Phys. 66(3), 519 (2011)

    ADS  Google Scholar 

  59. X.Q. Yang, L.J. Wang, J. Xiang, X.Y. Wu, Z.P. Li, Phys. Rev. C 103, 054321 (2021)

    ADS  Google Scholar 

  60. M. Wang, G. Audi, F.G. Kondev et al., Chin. Phys. C 41(20170303), 030003 (2017)

    ADS  Google Scholar 

  61. M. Birk, A.E. Blaugrund, G. Goldring, E.Z. Skurnik, J.S. Sokolowski, Phys. Rev. 126, 726 (1962)

    ADS  Google Scholar 

  62. E. Bashandy, M. El-nesr, Nucl. Phys. 34(2), 483 (1962)

    Google Scholar 

  63. C.Y. Wu, D. Cline, A.B. Hayes, M.W. Simon, R. Krücken, J.R. Cooper, C.J. Barton, C.W. Beausang, C. Bialik, M.A. Caprio, R.F. Casten, A.A. Hecht, H. Newman, J. Novak, N. Pietralla, K. Zyromski, N.V. Zamfir, Phys. Rev. C 64, 014307 (2001)

    ADS  Google Scholar 

  64. R. Chopra, P. Tandon, S. Devare, H. Devare, Nucl. Phys. A 209(3), 461 (1973)

    ADS  Google Scholar 

  65. T. Daniel, S. Kisyov, P.H. Regan, N. Marginean, Z. Podolyák, R. Marginean, K. Nomura, M. Rudigier, R. Mihai, V. Werner, R.J. Carroll, L.A. Gurgi, A. Oprea, T. Berry, A. Serban, C.R. Nita, C. Sotty, R. Suvaila, A. Turturica, C. Costache, L. Stan, A. Olacel, M. Boromiza, S. Toma, Phys. Rev. C 95, 024328 (2017)

    ADS  Google Scholar 

  66. N.R. Johnson, P.P. Hubert, E. Eichler, D.G. Sarantites, J. Urbon, S.W. Yates, T. Lindblad, Phys. Rev. C 15, 1325 (1977)

Download references

Acknowledgements

The authors acknowledge the Computer Division of Variable Energy Cyclotron Centre, Kolkata for providing the necessary computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Senthil Kannan.

Additional information

Communicated by Takashi Nakatsukasa

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannan, M.T.S., Ashok, N., Nayak, S.S. et al. Shape evolution of sub-lead neutron-rich nuclei around the neutron shell closure. Eur. Phys. J. A 59, 220 (2023). https://doi.org/10.1140/epja/s10050-023-01127-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01127-z

Navigation