Skip to main content
Log in

Spatial Distribution of Invertebrates in the Soils of the Southeastern Part of the Bolshezemelskaya Tundra

  • ECOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

A characterization of the spatial distribution of soil biota (nematodes, microarthropods, large soil invertebrates) in plant communities of the southeastern sector of the Bolshezemelskaya tundra (Komi Republic, environs of Vorkuta) is given. For all groups of soil invertebrates studied, an aggregated distribution was noted, in which the body size of the organism plays a certain role. It is shown that the level of moisture in the soils of tundra ecosystems does not significantly affect the spatial distribution of various groups of soil organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Babenko, A.B., Adaptation of collembolans to the temperature conditions of high latitudes, Usp. Sovrem. Biol., 1993, vol. 113, pp. 223–227.

    Google Scholar 

  2. Block, W., Cold or drought: the lesser of two evils for terrestrial arthropods?, Eur. J. Entomol., 1996, vol. 93, pp. 325–340.

    Google Scholar 

  3. Bokhorst, S., Phoenix, G.K., Bjerke, J.W., Callaghan, T.V., Huyer-Brugman, F., and Berg, M.P., Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa, Global Change Biol., 2012, vol. 18, pp. 1152–1162. https://doi.org/10.1111/j.1365-2486.2011.02565.x

    Article  Google Scholar 

  4. Borcard, D. and Legendre, P., Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari, Oribatei), Environ. Ecol. Statist., 1994, vol. 1, pp. 37–61.

    Article  Google Scholar 

  5. Chernov, Yu.I., The dependence of the composition of the animal population of soils and sod on the vegetation cover pattern in some types of tundra, Probl. Severa, 1964, no. 8, pp. 254–267.

  6. Convey, P., Block, W., and Peat, H.J., Soil arthropods as indicators of water stress in Antarctic terrestrial habitats?, Global Change Biol., 2003, vol. 9, pp. 1718–1730. https://doi.org/10.1046/j.1529-8817.2003.00691.x

    Article  Google Scholar 

  7. Coulson, S.J., Hodkinson, I.D., and Webb, N.R., Microscale distribution patterns in high arctic soil microarthropod communities: the influence of plant species within the vegetation mosaic, Ecography, 2003, vol. 26, pp. 801–809.

    Article  Google Scholar 

  8. Decaëns, T., Macroecological patterns in soil communities, Global Ecol. Biogeogr., 2010, vol. 19, pp. 287–302. https://doi.org/10.1111/j.1466-8238.2009.00517.x

    Article  Google Scholar 

  9. Ettema, C.H. and Wardle, D.A., Spatial soil ecology, Trends Ecol. Evol., 2002, vol. 17, pp. 177–183.

    Article  Google Scholar 

  10. George, P.B.L. and Lindo, Z., Application of body size spectra to nematode trait-index analyses, Soil Biol. Biochem., 2015, vol. 84, pp. 15–20. https://doi.org/10.1016/j.soilbio.2015.02.007

    Article  CAS  Google Scholar 

  11. Gilyarov, M.S., The ratio of the size and abundance of soil animals, Dokl. Akad. Nauk SSSR, 1944, no. 6, pp. 283–285.

  12. Guo, Y., Gao, M., Liu, J., Zaitsev, A.S., and Wu, D., Disentangling the drivers of ground-dwelling macro-arthropod metacommunity structure at two different spatial scales, Soil Biol. Biochem., 2019, vol. 130, pp. 55–62. https://doi.org/10.1016/j.soilbio.2018.12.002

    Article  CAS  Google Scholar 

  13. Hansen, R.R., Hansen, O.L.P., Bowden, J.J., Treier, U.A., Normand, S., and Hoye, T., Meter scale variation in shrub dominance and soil moisture structure arctic arthropod communities, Peer J., 2016, pp. 1–18. https://doi.org/10.7717/peerj.2224

  14. Hodkinson, I.D., Babenko, A., Behan-Pelletier, V., Bocher, J., Boxshall, G., Brodo, F., Coulson, S.J., Smet, W., Dózsa-Farkas, K., Elias, S., Fjellberg, A., Fochetti, R., Foottit, R., Hessen, D., Hobaek, A., Holmstrup, M., Koponen, S., Liston, A., Makarova, O., Marusik, Y.M., Michelsen, V., Mikkola, K., Mustonen, T., Pont, A., Renaud, A., Rueda, L.M., Savage, J., Smith, H., Samchyshyna, L., Velle, G., Viehberg, F., Vikberg, V., Wall, D.H., Weider, L.J., Wetterich, S., Yu, Q., and Zinovjev, A., Terrestrial and freshwater invertebrates, in Arctic Biodiversity Assessment. Status and Trends in Arctic Biodiversity, Meltofte, H., Ed., Akureyri: CAFF, 2013, pp. 195–223.

    Google Scholar 

  15. Holland, J.D., Fahrig, L., and Cappuccino, N., Body size affects the spatial scale of habitat–beetle interactions, Oikos, 2005, vol. 110, pp. 101–108.

    Article  Google Scholar 

  16. Høye, T.T., Bowden, J.J., Hansen, O.L.P., Hansen, R.R., Henriksen, T.N., Niebuhr, A., and Skytte, M.G., Elevation modulates how arctic arthropod communities are structured along local environmental gradients, Polar Biol., 2018, vol. 41, pp. 1555–1565. https://doi.org/10.1007/s00300-017-2204-2

    Article  Google Scholar 

  17. Joschko, M., Fox, C.A., Lentzsch, P., Kiesel, J., Hierold, W., Kruck, S., and Timmer, J., Spatial analysis of earthworm biodiversity at the regional scale, Agricult. Ecosyst. Environ., 2006, vol. 112, pp. 367–380. https://doi.org/10.1016/j.agee.2005.08.026

    Article  Google Scholar 

  18. Klironomos, J.N. and Kendrick, B., Relationships among microarthropods, fungi, and their environment, Plant Soil, 1995, vol. 170, pp. 183–197.

    Article  CAS  Google Scholar 

  19. Klironomos, J.N., Rillig, M.C., and Allen, M.F., Designing belowground field experiments with the help of semi-variance and power analyses, Appl. Soil. Ecol., 1999, vol. 12, pp. 227–238.

    Article  Google Scholar 

  20. Kudrin, A.A., Dolgin, M.M., Kolesnikova, A.A., Konakova, T.N., and Taskaeva, A.A., Features of the spatial distribution of soil fauna in pine forests of northern taiga (Komi Republic), Vestn. Sev. Arkt. Fed. Univ., 2014, no. 1, pp. 72–83.

  21. Kudrin, A.A., Konakova, T.N., and Taskaeva, A.A., Communities of soil nematodes of various tundra phytocenoses differing in the development level of the shrub layer, Russ. J. Ecol., 2019, vol. 50, pp. 526–534. https://doi.org/10.1134/S1067413619060092

    Article  Google Scholar 

  22. Lindo, Z., Warming favours small-bodied organisms through enhanced reproduction and compositional shifts in belowground systems, Soil Biol. Biochem., 2015, vol. 91, pp. 271–278. https://doi.org/10.1016/j.soilbio.2015.09.003

    Article  CAS  Google Scholar 

  23. Mills, A.A.S. and Adl, M.S., Changes in nematode abundances and body length in response to management intensive grazing in a low-input temperate pasture, Soil Biol. Biochem., 2011, vol. 43, pp. 150–158. https://doi.org/10.1016/j.soilbio.2010.09.027

    Article  CAS  Google Scholar 

  24. Nielsen, U.N., Ayres, E., Wall, D.H., Li, G., Bardgett, R.D., Wu, T., and Garey, J.R., Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties, Clobal Ecol. Biogeogr., 2014, vol. 23, pp. 968–978. https://doi.org/10.1111/geb.12177

    Article  Google Scholar 

  25. Nkem, J.N., Wall, D.H., Virginia, R.A., Barrett, J.E., Broos, E.J., Porazinska, D.L., and Adams, B.J., Wind dispersal of soil invertebrates in the McMurdo Dry Valleys, Antarctica, Polar Biol., 2006, vol. 29, pp. 346–352. https://doi.org/10.1007/s00300-005-0061-x

    Article  Google Scholar 

  26. Petchey, O.L. and Belgrano, A., Body-size distributions and size-spectra: universal indicators of ecological status?, Biol. Lett., 2010, vol. 6, pp. 434–437. https://doi.org/10.1098/rsbl.2010.0240

    Article  PubMed  PubMed Central  Google Scholar 

  27. Petersen, H., Collembolan communities in shrublands along climatic gradients in Europe and the effect of experimental warming and drought on population density, biomass and diversity, Soil Organisms, 2011, vol. 83, no. 3, pp. 463–488.

    Google Scholar 

  28. Pokarzhevskii, A.D., Gongal’skii, K.B., Zaitsev, A.S., and Savin, F.A., Prostranstvennaya ekologiya pochvennykh zhivotnykh (Spatial Ecology of Soil Animals), Dobrovol’skii, G.V., Ed., Moscow: KMK, 2007.

  29. Ponge, J.-F., Dubs, F., Gillet, S., Sousa, J.P., and Lavelle, P., Decreased biodiversity in soil springtail communities: the importance of dispersal and landuse history in heterogeneous landscapes, Soil Biol. Biochem., 2006, vol. 38, no. 5, pp. 1158–1161. https://doi.org/10.1016/j.soilbio.2005.09.004

    Article  CAS  Google Scholar 

  30. Powers, L.E., Freckman, D.W., and Virginia, R.A., Spatial distribution of nematodes in polar desert soils of Antarctica, Polar Biol., 1995, vol. 15, pp. 325–333.

    Article  Google Scholar 

  31. Puzin, C., Bonte, D., and Petillon, J., Influence of individual density and habitat availability on long-distance dispersal in a saltmarsh spider, Ethol. Ecol. Evol., 2018, vol. 31, no. 1, pp. 28–37. https://doi.org/10.1080/03949370.2018.1486888

    Article  Google Scholar 

  32. Saraeva, A.K., Potapov, M.B., and Kuznetsova, N.A., Different-scale distribution of collembola in homogenous ground vegetation: sphagnum moss, Entomol. Rev., 2015, vol. 95, pp. 557–577. https://doi.org/10.7868/S0044513415050098

    Article  Google Scholar 

  33. Scherber, C., Eisenhauer, N., Weisser, W.W., Schmid, B., Voigt, W., Schulze, E.-D., Roscher, C., Weigelt, A., Allan, E., Beßler, H., Bonkowski, M., Buchmann, N., Buscot, F., Clement, L.W., Ebeling, A., Engels, C., Fischer, M.S., Halle, S., Kertscher, I., Klein, A.-M., Koller, R., König, S., Kowalski, E., Kummer, V., Kuu, A., Lange, M., Lauterbach, D., Middelhoff, C., Migunova, V.D., Milcu, A., Muller, R., Partsch, S., Petermann, J.S., Renker, C., Rottstock, T., Sabais, A., Scheu, S., Schumacher, J., Temperton, V.M., and Tscharntke, T., Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment, Nature, 2010, vol. 468, no. 7323, pp. 553–556. https://doi.org/10.1038/nature09492

    Article  CAS  PubMed  Google Scholar 

  34. Stebaeva, S.K., Life forms of springtails (Collembola), Zool. Zh., 1970, vol. 49, no. 10, pp. 1437–1455.

    Google Scholar 

  35. Szujecki, A., Ecology of Forest Insects, Warszawa: Springer, 1987.

    Google Scholar 

  36. Tahseen, Q., Nematodes in aquatic environments: adaptations and survival strategies, Biodiversity J., 2012, vol. 3, no. 1, pp. 13–40.

    Google Scholar 

  37. Turnbull, M.S. and Lindo, Z., Combined effects of abiotic factors on Collembola communities reveal precipitation may act as a disturbance, Soil Biol. Biochem., 2015, vol. 82, pp. 36–43. https://doi.org/10.1016/j.soilbio.2014.12.007

    Article  CAS  Google Scholar 

  38. Turnbull, M.S., George, P.B.L., and Lindo, Z., Weighing in: size spectra as a standard tool in soil community analyses, Soil Biol. Biochem., 2014, vol. 68, pp. 366–372. https://doi.org/10.1016/j.soilbio.2013.10.019

    Article  CAS  Google Scholar 

  39. Usher, M.B., Some properties of the aggregations of soil arthropods: Collembola, J. Anim. Ecol., 1969, vol. 38, pp. 607–622.

    Article  Google Scholar 

  40. Viketoft, M., Determinants of small-scale spatial patterns: importance of space, plants and abiotics for soil nematodes, Soil Biol. Biochem., 2013, vol. 62, pp. 92–98. https://doi.org/10.1016/j.soilbio.2013.03.012

    Article  CAS  Google Scholar 

  41. Woodward, G., Ebenman, B., Emmerson, M., Montoya, J.M., Olesen, J.M., Valido, A., and Warren, P.H., Body size in ecological networks, Trends Ecol. Evol., 2005, vol. 20, no. 7, pp. 402–409. https://doi.org/10.1016/j.tree.2005.04.005

    Article  PubMed  Google Scholar 

  42. Wu, P. and Wang, Ch., Differences in spatiotemporal dynamics between soil macrofauna and mesofauna communities in forest ecosystems: the significance for soil fauna diversity monitoring, Geoderma, 2019, vol. 337, pp. 266–272. https://doi.org/10.1016/j.geoderma.2018.09.031

    Article  Google Scholar 

  43. Yeates, G.W., Bongers, T., de Goede, R.G.M., Freckman, D.W., and Georgieva, S.S., Feeding habits in soil nematode families and genera: an outline for soil ecologists, J. Nematol., 1993, vol. 25, pp. 315–331.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Yu.V. Kholopov and A.A. Rud (Institute of Biology) for help with sampling.

Funding

This work was carried out within the framework of a state assignment on the topics “Distribution, Systematics, and Spatial Organization of the Fauna and population of Terrestrial and Aquatic Animals of Taiga and Tundra Ecosystems of the European North-East of Russia” (project no. Gr RK AAAA-A17-117112850235-2) and “Identification of General Patterns of Formation and Functioning of Peat Soils on the Territory of the Arctic and Subarctic Sectors of the European Northeast of Russia” (project no. Gr AAAA-A17-117122290011-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Taskaeva.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taskaeva, A.A., Konakova, T.N., Kolesnikova, A.A. et al. Spatial Distribution of Invertebrates in the Soils of the Southeastern Part of the Bolshezemelskaya Tundra. Biol Bull Russ Acad Sci 48, 94–102 (2021). https://doi.org/10.1134/S1062359021010143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359021010143

Navigation