Skip to main content
Log in

New Data on Taxonomic and Geographic Distribution of the trnLUAA Intron Deletion of Chloroplast DNA in Hedysarum L. (Fabaceae L.)

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

A significant length polymorphism (309–735 bp) and nucleotide variability were detected by the study of the intergenic spacer trnL-trnF of chloroplast DNA in Hedysarum species belonging to sections Hedysarum and Multicaulia (family Fabaceae). Among nineteen Hedysarum species analyzed, the region trnL-trnF was not investigated before for thirteen species. The trnL intron deletion was first discovered for four Hedysarum species: H. austrosibiricum, H. cisbaiсalense, H. theinum, and H. consanguineum. The chloroplast cytotype without deletion of the trnL intron was reported for the first time for H. alpinum. This paper proposes a hypothesis about the polyphyletic origin of the genus and mechanisms of the formation of the phenomena for the first time established for genus Hedysarum of heteroplasmy and chloroplast cytotype variability found in H. consanguineum and H. alpinum on the basis of the data of trnL intron labeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Shneer, V.S., Chloroplast DNA as a source of information for taxonomy and phylogeny of higher plants, Bot. Zh., 1991, vol. 76, no. 12, pp. 1657-1673.

    CAS  Google Scholar 

  2. Shaw, J., Lickey, E.B., Schilling, E.E., and Small, R.L., Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III, Am. J. Bot., 2007, vol. 94, no. 3, pp. 275-288. doi 10.3732/ajb.94.3.275

    Article  PubMed  CAS  Google Scholar 

  3. Taberlet, P., Gielly, L., Pautou, G., and Bouvet, J., Universal primers for amplification of three non-coding regions of chloroplast DNA, Plant Mol. Biol., 1991, vol. 17, pp. 1105-1109.

    Article  PubMed  CAS  Google Scholar 

  4. Taberlet, P., Coissac, E., Pompanon, F., et al., Power and limitation of the chloroplast trnL (UAA) intron for plant DNA-barcoding, Nucleic Acids Res., 2007, vol. 35, no. 3, p. e14. doi 10.1093/nar/gkl938

    Article  PubMed  CAS  Google Scholar 

  5. Kress, W.J. and Erickson, D.L., A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region, PLoS One, 2007, vol. 6. e508. doi 10.1371/journal.pone.0000508

    Article  CAS  Google Scholar 

  6. Kress, W.J., Wurdack, K.J., Zimmer, E.A., et al., Use of DNA barcodes to identity flowering plants, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 23, pp. 8369-8374. doi 10.1073/pnas.0503123102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Shaw, J., Lickey, E.B., Beck, J.T., et al., The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis, Am. J. Bot., 2005, vol. 92, no. 1, pp. 142-166. doi 10.3732/ajb.92.1.142

    Article  PubMed  CAS  Google Scholar 

  8. Kass, E. and Wink, M., Molecular phylogeny of the Papilionoideae (family Leguminosae): rbcL gene sequences versus chemical taxonomy, Bot. Acta, 1995, vol. 108, pp. 149-162. doi 10.1111/j.1438-8677.1995. tb00845.x

    Article  Google Scholar 

  9. D’yachenko, E.A., Filyushin, M.A., Pronin, E.P., and Kochieva, E.Z., Variability of the trnL plastid gene’s intron in the Faboideae species (Fabaceae family), Vavilovskii Zh. Genet. Sel., 2014, vol. 18, no. 4/1, pp. 724-731.

  10. Amirahmadi, S., Kazempour Osaloo, S., and Maassoumi, A.A., Loss of chloroplast trnLUAA intron in two species of Hedysarum (Fabaceae): evolutionary implications, Iran. J. Biotechnol., 2010, vol. 8, pp. 150-155.

    CAS  Google Scholar 

  11. Amirahmadi, S., Kazempour Osaloo, S., Moein, F., et al., Molecular systematics of the tribe Hedysareae (Fabaceae) based on nrDNA ITS and plastid trnL-F and matK sequences, Pl. Syst. Evol., 2014, vol. 300, pp. 729-747. doi 10.1007/s00606-013-0916-5

    Article  CAS  Google Scholar 

  12. Zitouna, N., Gharbi, M., Rhouma, H.B., et al., The evolution of rbcL: a methodology to follow the evolution patterns of Medicago and Sulla (Fabaceae) genera, Biochem. Syst. Ecol., 2014, vol. 57, pp. 33-39. doi 10.1016/j.bse.2014.07.018

    Article  CAS  Google Scholar 

  13. Goremykin, V., Bobrova, V., Pahnke, J., et al., Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL data do not support gnetalean affinities of angiosperms, Mol. Biol. Evol., 1996, vol. 13, no. 2, pp. 383-396.

    Article  PubMed  CAS  Google Scholar 

  14. Kelchner, S.A., The evolution of non-coding chloroplast DNA and its application in plants systematics, Ann. Missouri Bot. Gard., 2000, vol. 87, pp. 482-498. doi 10.2307/2666142

    Article  Google Scholar 

  15. Mikhailova, Yu.V., Krapivskaya, E.E., and Rodionov, A.V., Molecular genetic study of the independence of the genus Xamilenis Raf. as part of the Sileneae tribe, Ekol. Genet., 2014, vol. 12, no. 10, pp. 15-24.

    Google Scholar 

  16. Asakura, Y. and Barkan, A., A CRM domain protein functions dually in group I and II intron splicing in land plant chloroplast, Plant Cell, 2007, vol. 19, pp. 3864-3875. doi 10.1105/tpc.107.055160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Simon, D., Fewer, D., Friedl, T., and Bhattacharya, D., Phylogeny and self-splicing ability of the plastid tRNA-Leu group I intron, J. Mol. Evol., 2003, vol. 57, pp. 710-720. doi 10.1007/s00239-003-2533-3

    Article  PubMed  CAS  Google Scholar 

  18. Wolfe, K.H., Morden, C.W., and Palmer, J.D., Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant, Proc. Natl. Acad. Sci. U.S.A., 1992, vol. 89, pp. 10648-10652.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Palmer, J.D., Osorio, B., Aldrich, J., and Thompson, W.F., Chloroplast DNA evolution among legumes: loss of a large inverted repeat occurred prior to other sequence rearrangements, Curr. Genet., 1987, vol. 11, pp. 275-286.

    Article  CAS  Google Scholar 

  20. Lavin, M., Doyle, J.J., and Palmer, J.D., Evolutionary significance of the loss of the chloroplast-DNA inverted repeat in the Leguminosae subfamily Papilionoideae, Evolution, 1990, vol. 44, no. 2, pp. 390-402.

    Article  PubMed  CAS  Google Scholar 

  21. Baatout, H., Marrakchi, M., Mathieu, C., and Vedel, F., Variation of plastid and mitochondrial DNAs in the genus Hedysarum, Theor. Appl. Genet., 1985, vol. 70, pp. 577-584.

    Article  PubMed  CAS  Google Scholar 

  22. Ahangarian, S., Osaloo, S.K., and Maassoumi, A.A., Molecular phylogeny of the tribe Hedysareae with special reference to Onobrychis (Fabaceae) as inferred from nrDNA ITS sequences, Iran. J. Bot., 2007, vol. 13, no. 2, pp. 64-74.

    Google Scholar 

  23. Chennaoui, H., Marghali, S., Marrakchi, M., and Trifi-Farah, N., Phylogenetic relationships in the North African genus Hedysarum as inferred from ITS sequences of nuclear ribosomal DNA, Genet. Res. Crop Evol., 2007, vol. 54, pp. 389-397. doi 10.1007/s10722-006-0001-9

    Article  CAS  Google Scholar 

  24. Duan, L., Wen, J., Yang, X., et al., Phylogeny of Hedysarum and tribe Hedysareae (Leguminosae: Papilionoideae) inferred from sequense data of ITS, matK, trnL-F and psbA-trnH, Taxon, 2015, vol. 64, no. 1, pp. 49-64. doi 10.12705/641.26

    Article  Google Scholar 

  25. Liu, P.-L., Wen, J., Duan, L., et al., Hedysarum L. (Fabaceae: Hedysareae) is not monophyletic-evidence from phylogenetic analyses based on five nuclear and five plastid sequences, PLoS One, 2017, vol. 12, no. 1. e0170596. doi 10.1371/journal.pone. 0170596

  26. Doyle, J.J., Polyploidy in legumes, in Polyploidy and Genome Evolution, Berlin: Springer-Verlag, 2012, pp. 147-180.

    Google Scholar 

  27. Nikiforova, O.D. Genus Hedysarum L.-sweetvetch, in Konspekt flory Sibiri (Synopsis of the Siberian Flora), Novosibirsk: Nauka, 2005, p. 143.

    Google Scholar 

  28. Pavlova, N.S., Genus sweetvetch-Hedysarum L., in Sosudistye rasteniya sovetskogo Dal’nego Vostoka (Vascular Plants of the Soviet Far East), Leningrad: Nauka, 1989, vol. 4, pp. 289-291.

    Google Scholar 

  29. Fedchenko, B.A. Hedysarum L., in Flora SSSR (Flora of the Soviet Union), Leningrad: Akad. Nauk SSSR, 1948, vol. 13, pp. 284-297.

    Google Scholar 

  30. Chrtkova-Zertova, A., Hedysarum L., Flora Europaea, Cambridge: Cambridge Univ. Press, 1968, vol. 2, pp. 185-187.

    Google Scholar 

  31. Kurbatskii, V.I., Genus Hedysarum L., in Flora Sibiri (Flora of Siberia), Novosibirsk: Nauka, 1994, vol. 9, pp. 153-166.

    Google Scholar 

  32. Yakovlev, G.P., Sytin, A.K., and Roskov, Y.R., Legumes of Northern Eurasia: A Check-List, Kew: Royal Bot. Gardens, 1996, pp. 379-407.

    Google Scholar 

  33. Kumar, S., Stecher, G., and Tamura, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, no. 7, pp. 1870-1874. doi 10.1093/molbev/msw054

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Sa, R., Su, D., and Debreczy, Z., Taxonomic notes on the Hedysarum gmelinii complex (Fabaceae), Ann. Bot. Fennici, 2010, vol. 47, pp. 51-58. doi 10.5735/085. 047.0106

    Article  Google Scholar 

  35. Zvyagina (Nuzhdina), N.S., Dorogina, O.V., and Catalan, P., Genetic relatedness and taxonomy in closely related species of Hedysarum (Fabaceae), Biochem. Syst. Ecol., 2016, vol. 69, pp. 176-187. doi 10.1016/j.bse.2016.10.001

  36. Fedchenko, B.A., Review of the Hedysarum species, Tr. Imp. S.-Peterb. Bot. Sada, 1902, no. 19, pp. 185-342.

  37. Choi, B.-H. and Ohashi, H., Generic criteria and infrageneric system for Hedysarum and related genera (Papilionoideae-Leguminosae), Taxon, 2003, vol. 52, pp. 567-576. doi 10.2307/3647455

    Article  Google Scholar 

  38. Marghali, S., Marrakchi, M., and Trifi-Farah, N., Phylogenetic relationships in the North African genus Hedysarum as inferred from ITS sequences of nuclear ribosomal DNA, Genet. Res. Crop Evol., 2007, vol. 54, pp. 389-397. doi 10.1007/s10722-006-0001-9

    Article  CAS  Google Scholar 

  39. Kim, S., Lim, H., Park, S., et al., Identification of a novel mitochondrial genome type and development of molecular markers for cytoplasm classification in radish (Raphanus sativus L.), Theor. Appl. Genet., 2007, vol. 115, pp. 1137-1145. doi 10.1007/s00122-007-0639-5

    Article  PubMed  CAS  Google Scholar 

  40. Birky, C.W., The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models, Annu. Rev. Genet., 2001, vol. 35, pp. 125-148. doi 10.1146/annurev.genet.35.102401.090231

    Article  PubMed  CAS  Google Scholar 

  41. Small, I.D., Isaac, P.G., and Leaver, C.J., Stoichiometric differences in DNA molecules containing the atpA gene suggest mechanisms for the generation of mitochondrial genome diversity in maize, EMBO J., 1987, vol. 6, no. 4, pp. 865-869.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kim, S., Lee, Y.-P., Lim, H., et al., Identification of a highly variable chloroplast sequences and development of cpDNA-based molecular markers that distinguish four cytoplasm types in radish (Raphanus sativus L.), Theor. Appl. Genet., 2009, vol. 119, pp. 189-198. doi 10.1007/s00122-009-1028-z

    Article  PubMed  CAS  Google Scholar 

  43. Knyazev, M.S., The new hybridogenic species of Hedysarum from Eastern Europe, Bot. Zh., 2011, vol. 96, no. 8, pp. 1122-1126.

    Google Scholar 

  44. Suprun, N.A. and Shantser, I.A., Genetic variability of the species relative to H. grandiflorum Pall. (Fabaceae) according to the ISSR marking, Byull. Gl. Bot. Sada, 2012, vol. 4, pp. 41-48.

    Google Scholar 

  45. Feldman, M. and Levy, A.A., Allopolyploidy-a shaping force in the evolution of wheat genomes, Cytogenet. Genome Res., 2005, vol. 109, pp. 250-258. doi 10.1159/000082407

    Article  PubMed  CAS  Google Scholar 

  46. Madlung, A., Masuelli, R.W., Watson, B., et al., Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids, Plant Physiol., 2002, vol. 129, no. 2, pp. 733-746. doi 10.1104/pp.003095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Brown, W.V. and Pratt, G.A., Hybridization and introgression in the grass genus Elymus, Am. J. Bot., 1960, vol. 47, no. 8, pp. 669-676.

    Article  Google Scholar 

  48. Hardig, T.M., Brunsfeld, S.J., Fritz, R.S., et al., Morphological and molecular evidence for hybridization and introgression in a willow (Salix) hybrid zone, Mol. Ecol., 2000, vol. 9, no. 1, pp. 9-24.

    Article  PubMed  CAS  Google Scholar 

  49. Kramina, T.E., Degtjareva, G.V., Samigullin, T.H., et al., Phylogeny of Lotus (Leguminosae: Loteae): partial incongruence between nrITS, nrETS and plastid markers and biogeographic implications, Taxon, 2016, vol. 65, no. 5, pp. 997-1018. doi 10.12705/655.4

    Article  Google Scholar 

  50. Shantser, I.A., Phylogeny and taxonomy of recently diverged groups on the example of the genus Rosa, Tr. Zool. Inst. Ross. Akad. Nauk, 2013, vol. 2, pp. 202-216.

    Google Scholar 

  51. Zhukova, P.G. and Petrovskii, V.V., Chromosome numbers of some plant species of Western Chukotka, Bot. Zh., 1976, vol. 61, no. 7, pp. 963-969.

    Google Scholar 

  52. Krogulevich, R.E., The role of polyploidy in the genesis of Putoran flora,in Flora Putorana: materialy k poznaniyu osobennostei sostava gornykh subarkticheskikh flor Sibiri (Putoran Flora: Materials for Knowledge of the Composition of the Mountain Subarctic Flora of Siberia), Novosibirsk: Nauka, 1976, pp. 217-235.

    Google Scholar 

  53. Krogulevich, R.E., Karyological analysis of the Eastern Sayan flora, in Flora Pribaikal’ya (Flora of the Cis-Baikal Region), Novosibirsk: Nauka, 1978, pp. 19-48.

    Google Scholar 

  54. Krasnikov, A.A. and Shaulo, D.N., Karyological study of the Tuva Republic flora: summary, Turczaninowia, 2004, vol. 7, no. 2, pp. 82-95.

    Google Scholar 

  55. Kurbatskii, V.I. and Malakhova, L.A., Chromosome numbers for some species of Hedysarum L. in the south of the Krasnoyarsk krai (Minusinsky Steppe), Sist. Zam. Mater. Gerb. Tomsk Gos. Univ., 2003, vol. 93, pp. 12-13.

    Google Scholar 

  56. Filippov, E.G., Kulikov, P.V., and Knyazev, M.S., Chromosome numbers of Astragalus and Hedysarum (Fabaceae) species from Russia, Bot. Zh., 2008, vol. 93, no. 10, pp. 1614-1619.

    Google Scholar 

  57. Cherkasova, E.S., Chromosome numbers of rare Hedysarum (Fabaceae) species, Bot. Zh., 2009, vol. 94, no. 1, pp. 135-138.

    Google Scholar 

  58. Yan, G.X., Zhang, S.Z., Yan, J.F., et al., Chromosome numbers and geographical distribution of 68 species of forage plants, Grassl. China (Zhongguo Caoyuan), 1989, vol. 4, pp. 53-60.

    Google Scholar 

  59. Zvyagina (Nuzhdina), N.S., Dorogina, O.V., and Krasnikov, A.A., Genetic differentiation and karyotype variation in Hedysarum chaiyrakanicum, an endemic species of Tuva Republic, Russia, Ind. J. Exp. Biol., 2016, vol. 54, no. 5, pp. 338-344.

  60. Shneyer, V.S. and Kotseruba, V.V., Cryptic species in plants and their detection by genetic differentiation between populations, Ekol. Genet., 2014, vol. 12, no. 3, pp. 12-31.

    Google Scholar 

  61. Sarkinen, T.E., Marcelo-Pena, J.L., Yomona, A.D., et al., Underestimated endemic species diversity in the dry inter-Andean valley of the Rio Maranon, northern Peru: an example from Mimosa (Leguminosae, Mimosoideae), Taxon, 2011, vol. 60, no. 1, pp. 139-150. doi 10.5167/uzh-51346

    Article  Google Scholar 

  62. Flores-Olvera, H., Zumaya, S., and Borsch, T., Two new species of Iresine (Amaranthaceae: Gomphrenoideae) from Mexico supported by morphological and molecular characters, Willdenowia, 2016, vol. 46, pp. 165-174. doi 10.3372/wi.46.46113

    Article  Google Scholar 

  63. Grant, V., Plant Speciation, New York: Columbia Univ. Press, 1981, 2nd ed.

    Book  Google Scholar 

  64. Lewke Bandara, N., Papini, A., Mosti, S., et al., A phylogenetic analysis of genus Onobrychis and its relationships within the tribe Hedysareae (Fabaceae), Turk. J. Bot., 2013, vol. 37, pp. 981-992. doi 10.3906/bot-1210-32

    Article  Google Scholar 

  65. Rollins, R.C., Studies in the genus Hedysarum in North America, Rhodora, 1940, vol. 42, no. 499, pp. 217-239.

    Google Scholar 

  66. Yurtsev, B.A., Arkticheskaya flora SSSR (Arctic Flora of the Soviet Union), Leningrad: Nauka, 1986, issue 9, part 2, pp. 146-160.

  67. Nishimoto, Y., Ohnoshi, O., and Hasegawa, M., Topological incongruence between nuclear and chloroplast DNA trees suggesting hybridization in the urophyllum group of the genus Fagopyrum (Polygonaceae), Genes Genet. Syst., 2003, vol. 78, pp. 139-153.

    Article  PubMed  CAS  Google Scholar 

  68. Ali, M.A., Van, D.L., and Kim, S.-Y., Molecular systematic study of Cardamine glechomifolia Levl. (Brassicaceae) using internal transcribed spacer sequence of nuclear ribosomal DNA (ITS) and chloroplast trnL and trnL-F sequences, Saudi J. Biol. Sci., 2010, vol. 17, no. 4, pp. 275-290. doi 10.1016/j.sjbs.2010.06.001

    Article  CAS  Google Scholar 

  69. Pang, X., Song, J., Zhu, Y., et al., Applying plant DNA barcodes for Rosaceae species identification, Cladistics, 2011, vol. 27, no. 2, pp. 165-170. doi 10.1111/j.1096-0031.2010.00328.x

    Article  PubMed  Google Scholar 

  70. Faghir, M.B., Attar, F., Farazmand, A., and Kazempour Osaloo, S., Phylogeny of the genus Potentilla (Rosaceae) in Iran based on nrDNA ITS and cpDNA trnL-F sequences with a focus on leaf and style characters’ evolution, Turk. J. Bot., 2014, vol. 38, pp. 417-429. doi 10.3906/bot-1303-67

    Article  CAS  Google Scholar 

  71. Choi, B.-H. and Ohashi, H., Proposal to conserve the name Hedysarum (Leguminosae: Papillionoideae) with a conserved type, Taxon, 1998, vol. 47, p. 877.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out within the framework of the state task of the Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences Assessment of the Morphogenetic Potential of Plant Populations of North Asia by Experimental Methods, project no. AAAA-A17-117012610051-5.

We are grateful for the help in collecting the plant material to S.V. Asbaganov, I.A. Artemov, L.V. Buglova, E.V. Kobozeva, D.E. Nikonova, I.E. Smelyanskii, and I.V. Khan and to herbarium curators (NSK) V.M. Doron’kin and I.M. Deyun for kindly providing the herbarium samples for DNA analysis and L.Z. Lukmanova for assistance in the preparation of herbarium samples. To carry out the research, materials from the bioresource scientific collection of the Central Siberian Botanical Garden Herbarium of Higher Vascular Plants, Lichens, and Fungi (NSK) were used, UNU no. USU 440537.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Nuzhdina.

Additional information

Translated by K. Lazarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuzhdina, N.S., Bondar, A.A. & Dorogina, O.V. New Data on Taxonomic and Geographic Distribution of the trnLUAA Intron Deletion of Chloroplast DNA in Hedysarum L. (Fabaceae L.). Russ J Genet 54, 1282–1292 (2018). https://doi.org/10.1134/S1022795418110108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418110108

Keywords:

Navigation