Skip to main content
Log in

Co-Inoculation of Common Bean with Rhizobium and Azospirillum Enhance the Drought Tolerance

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Plant growth-promoting rhizobacteria (PGPR) have been shown to reduce the negative effects of drought on numerous plant species, but these effects are unknown for common bean (Phaseolus vulgaris L.) crop. The study aimed to investigate the effects of inoculation with Rhizobium tropici, Azospirillum brasilense and the co-inoculation with both rhizobacteria on the nodulation, growth and tolerance of common bean plants to drought stress. Three water replenishment regimes [100% of pot capacity (non-stress control), 50% of pot capacity (moderate stress) and 25% of pot capacity (severe stress)] and four seed inoculation treatments: control (non-inoculated), inoculation with R. tropici, inoculation with A. brasilense; and co-inoculation with R. tropici and A. brasilense were studied in an experiment arranged in a 3 × 4 factorial scheme with four replicates. Relative water content (RWC), membrane stability index, nodulation, relative chlorophyll index, plant growth, and grain production were recorded. The inoculation of common bean plants with R. tropici and A. brasilense, and the co-inoculation improved leaf membrane stability and minimized the water loss from leaf tissue of plants under water stress conditions. Plants co-inoculated with R. tropici and A. brasilense had greater nodulation and relative chlorophyll index under severe drought stress. The inoculation with A. brasilense and the co-inoculation can attenuate the pod abortion rate of bean plants under moderate drought conditions but had no effect under severe stress conditions. Co-inoculation of A. brasilense and R. tropici alleviate the negative effects of water stress and maintain growth and grain yield of the common bean plants, and therefore, this management practice can be used by common bean farmers to enhance the plant tolerance to drought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Companhia Nacional de Abastecimento, A cultura do feijão, Brasília: Conab, 2018. Disponível em. http:// www.conab.gov.br. Accessed October 27, 2019.

  2. Gray, S.B. and Brady, S.M., Plant developmental re-sponses to climate change, Dev. Biol., 2016, vol. 419, p. 64.

    Article  CAS  Google Scholar 

  3. Xu, Z., Zhou, G., and Shimizu, H., Plant responses to drought and rewatering, Plant Signal. Behav., 2010, vol. 5, p. 649.

    Article  CAS  Google Scholar 

  4. Vieira, E.A., Silva, M.G., Moro, C.F., and Laura, V.A., Physiological and biochemical changes attenuate the effects of drought on the Cerrado species Vatairea macro-carpa (Benth.) Ducke, Plant Physiol. Biochem., 2017, vol. 115, p. 472.

    Article  CAS  Google Scholar 

  5. Zoz, T., Steiner, F., Guimarгes, V.F., Castagnara, D.D., Meinerz, C.C., and Fey, R., Peroxidase activity as an indicator of water deficit tolerance in soybean cultivars, Biosci. J., 2013, vol. 29, p. 1664.

    Google Scholar 

  6. Mantovani, D., Veste, M., Boldt-Burisch, K., Fritsch, S., Koning, L.A., and Freese, D., Carbon allocation, nodulation, and biological nitrogen fixation of black locust (Robinia pseudoacacia L.) under soil water limitation, Ann. For. Sci., 2015, vol. 58, p. 259.

    Google Scholar 

  7. Osakabe, Y., Osakabe, K., Shinozaki, K., and Tran, L.S., Response of plants to water stress, Front. Plant Sci., 2014, vol. 5, p. 86.

    Article  Google Scholar 

  8. Naveed, M., Hussain, M.B., Zahir, Z.A., Mitter, B., and Sessitsch, A., Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN, Plant Growth Regul., 2014, vol. 73, p. 121.

    Article  CAS  Google Scholar 

  9. Gusain, Y.S., Singh, U.S., and Sharma, A.K., Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.), Afr. J. Biotechnol., 2015, vol. 14, p. 764.

    Article  CAS  Google Scholar 

  10. Agami, R.A., Medani, R.A., Abd El-Mola, I.A., and Taha, R.S., Exogenous application with plant growth promoting rhizobacteria (PGPR) or proline induces stress tolerance in basil plants (Ocimum bas-ilicum L.) exposed to water stress, Int. J. Agric. Enviro-n. Res., 2016, vol. 5, p. 78.

    Google Scholar 

  11. Vurukonda, S.S.K.P., Vardharajula, S., Shrivastava, M., and Skz, A., Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria, Microbiol. Res., 2016, vol. 184, p. 13.

    Article  Google Scholar 

  12. Inagaki, A.M., Guimarães, V.F., Rodrigues, L.F.O.S., Silva, M.B., Diamante, M.S., Rampim, L., Mioranza, T.M., and Duarte, J.B., Jr., Phosphorus fertilization associated to inoculation of maize with diazotrophic bacteria, Afr. J. Agric. Res., 2014, vol. 9, p. 3480.

    Article  Google Scholar 

  13. Chibeba, A.M., Guimarães, M.F., Brito, O.R., Nogueira, M.A., Araujo, R.S., and Hungria, M., Co-inoculation of soybean with Bradyrhizobium and Azospirill-um promotes early nodulation, Am. J. Plant Sci., 2015, vol. 6, p. 1641.

    Article  Google Scholar 

  14. Marks, B.B., Megías, M., Nogueira, M.A., and Hungria, M., Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium j-aponicum and Azospirillum brasilense inoculants with the soybean and maize crops, AMB Express, 2013, vol. 3: 21.

    Article  CAS  Google Scholar 

  15. Hungria, M., Nogueira, M.A., and Araujo, R.S., Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: a new biotechnological tool to improve yield and sustainability, Am. J. Plant Sci., 2015, vol. 6, p. 811.

    Article  CAS  Google Scholar 

  16. Bulegon, L.G., Guimarãe, V.F., Klein, J., Batisttus, A.G., Inagaki, A.M., Offmann, L.C., and Souza, A.K.P., Enzymatic activity, gas exchange and production of soybean co-inoculated with Bradyrhizobium japonicum and Azospirillum brasilense,Aust. J. Crop Sci., 2017, vol. 11, p. 888.

    Article  CAS  Google Scholar 

  17. Peres, A.R., Rodrigues, R.A.F., Arf, O., Portugal, J.R., and Corsini, D.C.D.C., Co-inoculation of Rhizobium tropici and Azospirillum brasilense in common beans grown under two irrigation depths, Rev. Ceres., 2016, vol. 63, p. 198.

    Article  Google Scholar 

  18. Juge, C., Prévost, D., Bertrand, A., Bipfubusa, M., and Chalifour, F.P., Growth and biochemical responses of soybean to double and triple microbial associations with Bradyrhizobium, Azospirillum and arbuscular mycorrhizae, Appl. Soil Ecol., 2012, vol. 61, p. 147.

    Article  Google Scholar 

  19. Casaroli, D. and Lier, Q.J., Critérios para determinaçao da capacidade de vaso, Rev. Bras. Ciênc.Solo, 2008, vol. 32, p. 59.

    Google Scholar 

  20. Catuchi, T.A., Guidorizzi, F.V.C., Guidorizi, K.A., Barbosa, A.M., and Souza, G.M., Respostas fisiológicas de cultivares de soja à adubação potássica sob diferentes regimes hídricos, Pesq. Agropec. Bras., 2012, vol. 47, p. 519.

    Article  Google Scholar 

  21. Lutts, S., Kinet, J.M., and Bouharmont, J., Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance, J. Plant Growth Regul., 1996, vol. 19, p. 207.

    Article  CAS  Google Scholar 

  22. Arzanesh, M.H., Alikhani, H.A., Khavazi, K., Rahimian, H.A., and Miransari, M., Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress, World J. Microbiol. Biotechnol., 2011, vol. 27, p. 197.

    Article  CAS  Google Scholar 

  23. Curá, J.A., Franz, D.R., Filosofía, J.E., Balestrasse, K.B., and Burgueño, L.E., Inoculation with Azospirillum sp. and Herbaspirillum sp. bacteria increases the tolerance of maize to drought stress, Microorganisms, 2017, vol. 5, p. 41.

  24. Pinheiro, C. and Chaves, M.M., Photosynthesis and drought: can we make metabolic connections from available data? J. Exp. Bot., 2011, vol. 62, p. 869. https://www. sciencedirect.com/science/journal/00121606/419/1

    Article  CAS  Google Scholar 

  25. Abbasi, S., Zahedi, H., Sadeghipour, O., and Akbari. R. Effect of plant growth promoting rhizobacteria (PGPR) on physiological parameters and nitrogen content of soybean grown under different irrigation regimes, Res. Crop., 2013, vol. 14, p. 798.

    Google Scholar 

  26. Benintende, S., Uhrich, W., Herrera, M., Gangge, F., Sterren, M., and Benintende, M., Comparación entre coinoculación con Bradyrhizobium japonicum y Azospirillum brasilense e inoculación simple con Bradyrhizobium japonicum en la nodulación, crecimiento y acumulación de N en el cultivo de soja, Agriscientia, 2010, vol. 37, p. 71.

    Google Scholar 

  27. Bai, Y., Zhou-Xiao, M., and Smith, D.L., Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum,Crop Sci., 2003, vol. 43, p. 1774.

    Article  Google Scholar 

  28. Fipke, G.M., Conceição, G.M., Grando, L.F., Teleken, L., Nunes, R.L., Ubirajara, R., and Martin, T.N., Co-inoculation with diazotrophic bacteria in soybeans associated to urea topdressing, Ciênc.Agrotec., 2016, vol. 40, p. 522.

    Article  CAS  Google Scholar 

  29. Sangtarash, M.H., Responses of different wheat genotypes to drought stress applied at different growth stages, Pak. J. Biol. Sci., 2010, vol. 13, p. 114.

    Article  CAS  Google Scholar 

  30. Fukami, J., Cerezini, P., and Hungria, M., Azospirillum: benefits that go far beyond biological nitrogen fixation, AMB Express, 2018, vol. 8, no. 73: 29728787.

    Article  CAS  Google Scholar 

Download references

Funding

We wish to thank CAPES (Coordination of Improvement of Higher Education Personnel) and IAC (Agronomic Institute of Campinas) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Steiner or C. E. da Silva Oliveira.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants as objects of research.

Additional information

Abbreviations: MSI—membrane stability index; PC—pot capacity; PGPR—plant growth-promoting rhizobacteria; RCI—relative chlorophyll index; RWC—relative water content; WUE—water use efficiency.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steiner, F., da Silva Oliveira, C.E., Zoz, T. et al. Co-Inoculation of Common Bean with Rhizobium and Azospirillum Enhance the Drought Tolerance. Russ J Plant Physiol 67, 923–932 (2020). https://doi.org/10.1134/S1021443720050167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443720050167

Keywords:

Navigation