Skip to main content
Log in

Steady-state flow of an incompressible viscoelastic polymer fluid between two coaxial cylinders

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A boundary value problem for a quasi-linear equation determining the velocity profile of a flow of a polymer fluid in a pipe formed by two coaxial cylinders is considered. On the basis of methods of approximation without saturation, a computational algorithm of increased accuracy is developed, making it possible to solve the problem in a wide range of parameters, including record-low values of r 0, the radius of the inner cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. W. Graessley, Polymeric Liquids and Networks: Dynamics and Rheology (Garland Science, London, 2008).

    Google Scholar 

  2. M. Kontopoulou, Applied Polymer Rheology: Polymeric Fluids with Industrial Applications (Wiley, Hoboken, 2012).

    Google Scholar 

  3. J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed. (Wiley, London, 1980).

    Google Scholar 

  4. A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Springer, Berlin, 1994).

    Google Scholar 

  5. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford Univ. Press, Oxford, 1986).

    Google Scholar 

  6. G. Astarita and G. Marucci, Principles of Non-Newtonian Fluid Mechanics (McGraw-Hill, New York, 1974).

    Google Scholar 

  7. G. Pyshnograi, H. Joda, and I. Pyshnograi, “The mesoscopic constitutive equations for polymeric fluids and some examples of viscometric flows,” World J. Mech. 2 (1), 19–27 (2012). doi doi 10.4236/wjm.2012.21003

    Article  Google Scholar 

  8. A. I. Leonov, A Brief Introduction to the Rheology of Polymeric Fluids (Coxmoor, Oxford, 2008).

    Google Scholar 

  9. H. Sun and S.-Q. Wang, “Shear and extensional rheology of entangled polymer melts: Similarities and differences,” Sci. China Chem. 55 (5), 779–786 (2012).

    Article  Google Scholar 

  10. G. Marcone, E. Orlandini, A. L. Stella, and F. Zonta, “What is the length of a knot in a polymer?,” J. Phys. A Math. Gen. 38, L15–L21 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Kremer, S. K. Sukumaran, R. Everaers, and G. S. Grest, “Entangled polymer systems,” Comput. Phys. Commun. 169 (1–3), 75–81 (2005).

    Article  Google Scholar 

  12. V. N. Pokrovskii, The Mesoscopic Theory of Polymer Dynamics, 2nd ed. (Springer, Berlin, 2010). doi doi 10.1007/978-90-481-2231-8

    Book  Google Scholar 

  13. Yu. A. Altukhov, A. S. Gusev, and G. V. Pyshnograi, Introduction to the Mesoscopic Theory of Fluid Polymer Systems (AltGPA, Barnaul, 2012).

    Google Scholar 

  14. M. A. Makarova, A. S. Gusev, G. V. Pyshnograi, and A. A. Rybakov, “Nonlinear viscoelasticity theory of linear polymers,” Elektron. Fiz.-Tekh. Zh. 2, 1–54 (2007).

    Google Scholar 

  15. A. M. Blokhin, B. V. Semisalov, and A. S. Shevchenko, “Stationary solutions of equations describing the nonisothermal flow of an incompressible viscoelastic polymeric fluid,” Mat. Model. 28 (10), 3–22 (2016).

    MathSciNet  MATH  Google Scholar 

  16. A. M. Blokhin and B. V. Semisalov, “A steady flow of an incompressible viscoelastic polymeric fluid through a channel with elliptical cross section,” Sib. Zh. Ind. Mat. 17 (4), 38–47 (2014).

    MATH  Google Scholar 

  17. A. M. Blokhin and A. S. Rudometova, “Stationary solutions to the equations describing the nonisothermic electrical convection of a weakly conductive incompressible polymeric fluid,” Sib. Zh. Ind. Mat. 18 (1), 3–13 (2015).

    MathSciNet  MATH  Google Scholar 

  18. A. M. Blokhin, A. S. Ibragimova, and B. V. Semisalov, “Design of a computational algorithm for a system of moment equations describing charge transport in semiconductors,” Mat. Model. 21 (4), 15–34 (2009).

    MathSciNet  MATH  Google Scholar 

  19. B. V. Semisalov, “Nonlocal algorithm for finding solutions of the Poisson equation and its applications,” Vychisl. Mat. Mat. Fiz. 54 (7), 1110–1135 (2014).

    MATH  Google Scholar 

  20. K. I. Babenko, Fundamentals of Numerical Analysis (Fizmatlit, Moscow, 1986) [in Russian].

    MATH  Google Scholar 

  21. B. V. Semisalov, “A fast nonlocal algorithm for solving Neumann–Dirichlet boundary value problems with error control,” Vychisl. Metody Program. 17 (4), 500–522 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Blokhin.

Additional information

Original Russian Text © A.M. Blokhin, E.A. Kruglova, B.V. Semisalov, 2017, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 7, pp. 1184–1197.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blokhin, A.M., Kruglova, E.A. & Semisalov, B.V. Steady-state flow of an incompressible viscoelastic polymer fluid between two coaxial cylinders. Comput. Math. and Math. Phys. 57, 1181–1193 (2017). https://doi.org/10.1134/S0965542517070053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542517070053

Keywords

Navigation