Skip to main content
Log in

Study on UV Spectrum and Antioxidant Properties of 3-tert-Butyl-4-hydroxyanisole Molecule

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Based on DFT, B3LYP method was used to optimize the structure of 3-tert-butyl-4-hydroxyanisole (BHA) molecule at the level of 6-311g(d,p) set level. On this basis, the first 50 excited states were calculated by using B3LYP/def 2-TZVP method based on TD-DFT with ethanol as solvent. Multiwfn 3.6 software was used to plot the UV spectrum, and three methods including atomic charges, Fukui function (FF) and electrostatic potential (ESP) were used to predict its electrophilic reactive sites. Finally, bond energy of O10–H11 and C12–O13 were investigated by the ωB97XD/TZVP method. Comparing the experimental and theoretical UV spectra, it was found that the overall agreement was good. The oxygen atom on the phenolic hydroxyl group and the oxygen atom on the ether bond are the electrophilic reactive sites. And the C12–O13 bond on the ether bond is more prone to dissociation. They are easily reacted with peroxide radicals to have oxidation resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. F. Shahidi, Die Nahrung 44, 158 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. A. L. Dawidowicz, M. Olszowy, and M. Jozwik-Doleba, J. Food Process. Preserv. 39, 2240 (2015).

    Article  CAS  Google Scholar 

  3. Z. D. Sun, X. X. Yang, Q. S. Liu, C. H. Li, Q. F. Zhou, H. Fiedler, C. Y. Liao, J. Q. Zhang, and G. B. Jiang, J. Hazard. Mater. 379, 120794 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. L. Q. Liu, Q. Q. Yu, Y. Liu, and R. T. Dai, Meat Res. 31, 45 (2017).

    Google Scholar 

  5. S. G. Gorji, M. Calingacion, H. E. Smyth, and M. Fitzgerald, J. Food Sci. Technol. 56, 4076 (2019).

    Article  Google Scholar 

  6. M. H. Lu, H. Y. Lei, Z. J. Wang, and J. Zhang, Spectrosc. Spectr. Anal. 37, 2087 (2017).

    CAS  Google Scholar 

  7. C. Alasalvar, A. Guder, H. Gokce, C. A. Kastas, and R. C. Celik, J. Mol. Struct. 1133, 37 (2017).

    Article  CAS  Google Scholar 

  8. R. Guitard, V. Nardello-Rataj, and J. M. Aubry, Int. J. Mol. Sci. 17, 1220 (2016).

    Article  PubMed Central  Google Scholar 

  9. C. J. Brala, I. Fabijanic, A. K. Markovic, and V. Pilepic, Comput. Theor. Chem. 1049, 1 (2014).

    Article  Google Scholar 

  10. R. D. Vargas-Sanchez, A. M. Mendoza-Wilson, G. R. Torrescano-Urrutia, and A. Sanchez-Escalante, Comput. Theor. Chem. 1066, 7 (2015).

    Article  CAS  Google Scholar 

  11. G. Arhin, A. H. Adams, E. Opoku, R. Tia, and E. Adei, J. Mol. Graph. Model. 92, 267 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. N. M. Thong, Q. V. Vo, T. L. Huyen, M. V. Bay, D. Tuan, and P. C. Nam, ACS Omega 4, 14996 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, et al., Gaussian09W D01 (Gaussian, Inc., Wallingford, CT, 2013).

  14. F. N. Ajeel, A. M. Khudhair, M. H. Mohammed, and Kh. M. Mahdi, Russ. J. Phys. Chem. 93, 778 (2019).

    Article  CAS  Google Scholar 

  15. L. Turker, Defence Technol. 15, 154 (2019).

    Article  Google Scholar 

  16. S. B. Novir, Chem. Phys. Lett. 690, 86 (2017).

    Article  CAS  Google Scholar 

  17. M. Borges-Martinez, D. Alvarez, N. Montenegro-Pohlhammer, M. I. Menendez, R. Lopez, and G. Cardenas-Jiron, J. Phys. Chem. C 123, 19362 (2019).

    Article  CAS  Google Scholar 

  18. T. Lu and F. W. Chen, J. Comput. Chem. 33, 580 (2012).

    Article  PubMed  Google Scholar 

  19. O. Holtomo, M. Nsangou, J. J. Fifen, and O. Motapon, J. Mol. Graph. Model. 92, 100 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. G. Mazzone, N. Russo, and M. Toscano, Comput. Theor. Chem. 1077, 39 (2016).

    Article  CAS  Google Scholar 

  21. J. B. Du, Y. L. Tang, Z. W. Long, S. H. Hu, and T. Li, Russ. J. Phys. Chem. 88, 819 (2014).

    Article  CAS  Google Scholar 

  22. T. Lu and F. W. Chen, Acta Phys.-Chim. Sin. 28, 1 (2012).

    Article  Google Scholar 

  23. P. Justin, R. Niranjana Devi, and K. Anitha, Canad. J. Phys. 97, 308 (2019).

    Article  CAS  Google Scholar 

  24. M. Manachoua, C. Morellb, H. Chermetteb, and S. Boughdiria, Chem. Phys. Lett. 727, 95 (2019).

    Article  Google Scholar 

  25. Y. E. Deng, D. H. Yu, X. F. Cao, L. G. Liu, C. Y. Rong, T. Lu, and S. B. Liu, Mol. Phys. 116, 956 (2017).

    Article  Google Scholar 

  26. J. S. Cao, Q. Ren, F. W. Chen, and T. Lu, Sci. Sin. Chim. 45, 1281 (2015).

    Article  CAS  Google Scholar 

  27. G. Vengatesh and M. Sundaravadivelu, Res. Chem. Intermed. 45, 4395 (2019).

    Article  CAS  Google Scholar 

  28. J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. X. Q. Ding, J. J. Ding, D. Y. Li, L. Pan, and C. X. Fei, Acta Phys.-Chim. Sin. 34, 314 (2018).

    Article  CAS  Google Scholar 

  30. F. L. Hirshfeld, Theor. Chem. Acc. 44, 129 (1977).

    Article  CAS  Google Scholar 

  31. T. Lu and F. W. Chen, Acta Chim. Sin. 69, 2393 (2011).

    CAS  Google Scholar 

  32. T. Lu and S. Manzetti, Struct. Chem. 25, 1521 (2014).

    Article  CAS  Google Scholar 

  33. W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. 14, 33 (1996).

  34. D. Wu, J. Yan, P. X. Tang, S. S. Li, K. L. Xu, and H. Li, Food Chem. 188, 370 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Y. Abiko and Y. Kumagai, Chem. Res. Toxicol. 26, 1080 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Project supported by the National Natural Science Foundation of China (grant no. 11164004) and the Photon Science and Technology Innovation Talent Team of Guizhou Province (grant no. 20154017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Shi or Yanlin Tang.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bin Shi, Yu, J., Tang, T. et al. Study on UV Spectrum and Antioxidant Properties of 3-tert-Butyl-4-hydroxyanisole Molecule. Russ. J. Phys. Chem. 95, 343–348 (2021). https://doi.org/10.1134/S0036024421020230

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421020230

Keywords:

Navigation