Skip to main content
Log in

Investigation of Phase Equilibria in the Ternary Systems RbCl–RbI–Rb2CrO4 and CsCl–CsI–Cs2CrO4

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

By differential thermal analysis, the ternary systems MCl–MI–M2CrO4 (M = Rb, Cs) were studied, and the characteristics (melting points, concentrations of components) of alloys at invariant equilibrium points of the systems were determined. The studied systems are systems of the same type that form by varying the alkali metal cation with increasing atomic number of the cation. In all the binary systems constituting the ternary systems, eutectics form. Based on analyzing the faceting elements, it was assumed that eutectics form in the ternary systems. Low-melting eutectic mixtures of alkali-metal halides and chromates are chemically stable even in the molten state and have low viscosity and low volatility, which makes them suitable for using as heat-storage materials or electrolytes for chemical current sources. Consideration of the systems MCl–MI–M2CrO4 (M = Li, Na, K, Rb, Cs) showed that the varying alkali metal cation in them does not affect the morphology of the liquidus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. P. Masset, J.-Y. Poinso, S. Schoeffert, et al., J. Electrochem. Soc. 152, A405 (2005). https://doi.org/10.1149/1.1850861

    Article  CAS  Google Scholar 

  2. D. Sveinbjörnsson, A. S. Christiansen, R. Viskinde, et al., J. Electrochem. Soc. 161, A1432 (2014). https://doi.org/10.1149/2.1061409jes

    Article  CAS  Google Scholar 

  3. R. Semwal, C. Ravi, R. Kumar, et al., J. Org. Chem. 84, 792 (2019). https://doi.org/10.1021/acs.joc.8b02637

    Article  CAS  PubMed  Google Scholar 

  4. J. Ge, S. Wang, L. Hu, et al., Carbon 98, 649 (2016). https://doi.org/10.1016/j.carbon.2015.11.065

    Article  CAS  Google Scholar 

  5. V. P. Danilov, E. A. Frolova, D. F. Kondakov, et al., Russ. J. Inorg. Chem. 64, 1165 (2019). https://doi.org/10.1134/S0036023619090067

    Article  CAS  Google Scholar 

  6. A. I. Rasulov, P. A. Akhmedova, and B. Yu. Gamataeva, Russ. J. Inorg. Chem. 64, 135 (2019). https://doi.org/10.1134/S0036023619010169

    Article  CAS  Google Scholar 

  7. E. O. Ignat’eva, E. M. Dvoryanova, and I. K. Garkushin, Russ. J. Inorg. Chem. 62, 236 (2017). https://doi.org/10.1134/S0036023617020073

    Article  CAS  Google Scholar 

  8. S. Ghosh, R. Ganesan, R. Sridharan, et al., J. Phase Equilib. Diffus. 39, 916 (2018). https://doi.org/10.1007/s11669-018-0695-3

    Article  CAS  Google Scholar 

  9. S. Ghosh, R. Ganesan, R. Sridharan, et al., Thermochim. Acta 653, 16 (2017). https://doi.org/10.1016/j.tca.2017.03.024

    Article  CAS  Google Scholar 

  10. E. Garcia, L. Rodriguez, V. Ferro, et al., Fluid Phase Equilib. 498, 132 (2019). https://doi.org/10.1016/j.fluid.2019.07.002

    Article  CAS  Google Scholar 

  11. R. Z. Cui, W. Li, and Y. P. Dong, J. Chem. Eng. Data 64, 4206 (2019). https://doi.org/10.1021/acs.jced.9b00271

    Article  CAS  Google Scholar 

  12. H. J. Si, Y. X. Jiang, Y. Tang, et al., J. Magnesium Alloys 7, 501 (2019). https://doi.org/10.1016/j.jma.2019.04.006

    Article  CAS  Google Scholar 

  13. S. S. Likhacheva, E. M. Dvoryanova, and I. K. Garkushin, Russ. J. Inorg. Chem. 61, 99 (2016). https://doi.org/10.1134/S0036023616010149

    Article  CAS  Google Scholar 

  14. V. P. Egunov, Introduction to Thermal Analysis (Samara, 1996) [in Russian].

    Google Scholar 

  15. Thermal Constants of Substances: Handbook, Issue X, part 2: Tables of Accepted Values: K, Rb, Cs, Fr, Ed. by V. P. Glushko (VINITI, Moscow, 1981) [in Russian].

    Google Scholar 

  16. V. I. Posypaiko, E. A. Alekseeva, and N. A. Vasina, Melting Diagrams of Salt Systems, Part 3: Binary Systems with Common Cation (Metallurgiya, Moscow, 1979) [in Russian].

  17. A. V. Burchakov, E. M. Dvoryanova, and I. M. Kondratyuk, Russ. J. Inorg. Chem. 60, 511 (2015). https://doi.org/10.1134/S0036023615040038

    Article  CAS  Google Scholar 

  18. S. S. Korovin, G. V. Zimina, A. M. Reznik, et al., Rare and Dispersed Elements: Chemistry and Technology (MISIS, Moscow, 1996), Book I [in Russian].

  19. S. D. Gromakov, Zh. Fiz. Khim. 24, 641 (1981).

    Google Scholar 

  20. V. I. Lutsyk, Analysis of the Liquidus Surfaces of Ternary Systems (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  21. I. K. Garkushin, I. M. Kondratyuk, E. M. Dvoryanova, et al., Analysis, Prediction, and Experimental Investigation of Series of Systems of Alkali and Alkaline-Earth Element Halides (Ural Branch, Russ. Acad. Sci., Yekaterinburg, 2006) [in Russian].

    Google Scholar 

Download references

Funding

This work was performed within the base part of the State Assignment for the Samara State Technical University, Samara, Russia (project no. 4.5534.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Egorova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorova, E.M., Garkushin, I.K., Kondratyuk, I.M. et al. Investigation of Phase Equilibria in the Ternary Systems RbCl–RbI–Rb2CrO4 and CsCl–CsI–Cs2CrO4. Russ. J. Inorg. Chem. 65, 567–572 (2020). https://doi.org/10.1134/S003602362004004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362004004X

Keywords:

Navigation