Skip to main content
Log in

Analysis of the Series of the Ternary Systems MF–MBr–M2CrO4 (M = Li, Na, K, Rb, Cs) and Experimental Investigation of the Ternary System RbF–RbBr–Rb2CrO4

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Multicomponent systems of alkali metal halides and chromates are used as molten electrolytes for chemical current sources, heat storage materials, etc. In this work, the ternary system RbF–RbBr–Rb2CrO4 was studied. The ternary systems МF–MBr–M2CrO4 (М = Li, Na, K, Rb, Cs) were analyzed by comparing the types of the liquidi of the systems in the series formed by successive replacement of the alkali metal with increasing its number in the periodic system. The RbF–RbBr–Rb2CrO4 system was investigated by differential thermal analysis. Phase equilibria in the system were explored; crystallizing phases were determined; and the characteristics of the ternary eutectic and the ternary peritectic were found to be (equiv. %) 39.5 RbF, 52.0 RbBr, 8.5 Rb2CrO4, the melting point 522°C and 19.7 RbF, 55.0 RbBr, 25.3 Rb2CrO4, the melting point 554°C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. I. Frolov, A. A. Finogenov, I. K. Garkushin, et al., Russ. J. Inorg. Chem. 65, 405 (2020). https://doi.org/10.31857/S0044457X20030034

    Article  CAS  Google Scholar 

  2. G. E. Egortsev G.E. and I. K. Garkushin, Russ. J. Inorg. Chem. 53, 1495 (2008).

    Article  Google Scholar 

  3. I. K. Garkushin and I. M. Kondratyuk, Analysis, Prediction and Experimental Study of Series of Systems of Halides of Alkali and Alkaline Earth Elements (UrO RAN, Ekaterinburg, 2006) [in Russian].

    Google Scholar 

  4. P. P. Fedorov, Russ. J. Inorg. Chem. 66, 550 (2021). https://doi.org/10.1134/S0036023621040100

    Article  CAS  Google Scholar 

  5. P. A. Akhmedova, A. M. Gasanaliev, B. Y. Gamataeva. et al., Russ. J. Inorg. Chem. 62, 1390 (2017).

    Article  CAS  Google Scholar 

  6. P. A. Akhmedova, A. M. Gasanaliev, B. Y. Gamataeva, et al., Russ. J. Inorg. Chem. 63, 837 (2018). https://doi.org/10.1134/S0036023618060025

    Article  CAS  Google Scholar 

  7. A. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, et al., Russ. J. Phys. Chem. 92, 470 (2018).

    Article  CAS  Google Scholar 

  8. A. S. Trunin, A. V. Budkin, and E. Yu. Moshchenskaya, Actual Problems of Modern Science, ch. 9 (Samara, 2003) [in Russian].

    Google Scholar 

  9. D. Mantha, T. Wang, and R. G. Reddy, J. Phase Equilibria Diffusion 33, 110 (2012). https://doi.org/10.1007/s11669-012-0005-4

    Article  CAS  Google Scholar 

  10. L.-X. Jian, X.-Y. Wu, and Y.-Q. Tan, J. Hunan University Natural Sci. 41, 75 (2014).

    Google Scholar 

  11. I. K. Garkushin, T. V. Gubanova, E. I. Frolov, and E. Yu. Moshchenskaya, Elektrokhim. Energ. 10, 147 (2010).

    CAS  Google Scholar 

  12. P. Masset, J.-Y. Poinso, S. Schoeffert, et al., J. Electrochem. Soc. 152, A405 (2005). https://doi.org/10.1149/1.1850861

    Article  CAS  Google Scholar 

  13. D. Sveinbjornsson, A. S. Christiansen, R. Viskinde, et al., J. Electrochem. Soc. 161, A1432 (2014). https://doi.org/10.1149/2.1061409jes

    Article  CAS  Google Scholar 

  14. E. O. Ignat’eva and M. V. Chugunova, Ashirov. Chten. 1, 109 (2017).

    Google Scholar 

  15. E. O. Ignat’eva, E. M. Dvoryanova, and I. K. Garkushin, Kondens. Sredy Mezhfaz. Gran. 13, 445 (2011).

    Google Scholar 

  16. E. M. Dvoryanova, E. O. Ignat’eva, I. K. Garkushin, Butlerov Commun. 24, 71 (2011).

    Google Scholar 

  17. V. I. Posypaiko and E. A. Alekseeva, Melting Diagrams of Salt Systems, vol. III (Metallurgiya, Moscow, 1979) [in Russian].

    Google Scholar 

  18. N. K. Voskresenskaya, N. N. Evseeva, S. I. Berul’, and I. P. Vereshchatina, Fusibility Guide for Anhydrous Inorganic Salt Systems, ch. 1 (Izd-vo AN SSSR, Moscow, 1961) [in Russian].

    Google Scholar 

  19. M. Wagner, Thermal Analysis in Practice: Fundamental Aspects (Hanser Publications, 2018).

    Google Scholar 

  20. W. Wendlandt, Thermal Methods of Analysis (Interscience, 1964).

    Google Scholar 

  21. Yu. V. Moshchenskii, Prib. Tekh. Eksperim. 46, 143 (2003).

    Google Scholar 

  22. S. V. Fedotov, Yu. V. Moshchenskii, Interface Software DSCTool (Samar. Gos. Tekhn. Univ., Samara, 2004) [in Russian].

    Google Scholar 

  23. Thermal Constants of Substances. Handbook, Ed. by V. P. Glushko, vol. X, parts 1 and 2 (VINITI, Moscow) [in Russian].

  24. A. S. Kosmynin and A. S. Trunin, Projection-Thermographic Method for Studying Heterogeneous Equilibria in Condensed Multicomponent Systems (Samar. Gos. Tekhn. Univ., Samara, 2006) [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education within a project section of State assignment no. 0778-2020-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kharchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharchenko, A.V., Egorova, E.M. & Garkushin, I.K. Analysis of the Series of the Ternary Systems MF–MBr–M2CrO4 (M = Li, Na, K, Rb, Cs) and Experimental Investigation of the Ternary System RbF–RbBr–Rb2CrO4. Russ. J. Inorg. Chem. 67, 216–220 (2022). https://doi.org/10.1134/S0036023622020061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622020061

Keywords:

Navigation