Skip to main content
Log in

Microbial Biofilms in the Proshchal’naya Karst Cave (Far East, Russia)

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Effect of abiotic (composition of drip and fracture water) and biotic factors (composition and activity of microbial complexes) on biofilm formation in the Proshchal’naya karst cave (Far East, Russia) is reported. The effect of natural infiltration water on the structure of cultured microbial complexes and on the elemental composition of the moonmilk speleothem formed on the walls of the cave was studied. The highest concentrations of Fe and Mn were observed in drip water in spring. Organic compounds were shown to have an important effect on the rates of microbial processes at the water–rock interface, on the moonmilk elemental composition, and on the structure of communities involved in carbonate precipitation. The structure of moonmilk microbial communities was investigated using culture-based techniques and quantitative PCR analysis. Iron bacteria of the genera Rhodoferax and Geothrix, as well as Bacillus species, were identified in moonmilk samples. The microstructure and elemental composition of moonmilk samples from the Proshchal’naya cave were investigated by scanning electron microscopy coupled to X-ray microanalysis. SEM images of the moonmilk mass revealed diverse microstructures and high heterogeneity. Tubular microstructures contained more elements (C, O, Ca, Fe, Mn, Si, Al, and S) than claviform structures consisting of calcium carbonate (СаСО3). The moonmilk binding matrix consisted of thin nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Banks, E.D., Taylor, N.M., Gulley, J., Lubbers, B.R., Giarrizzo, J.G., Bullen, H.A., Hoehler, T.M., and Barton, H.A., Bacterial calcium carbonate precipitation in cave environments: a function of calcium homeostasis, Geomicrobiol. J., 2010, vol. 27, pp. 444–454.

    Article  CAS  Google Scholar 

  2. Barton, H.A. and Northup, D.E., Geomicrobiology in cave environments: past, current and future perspectives, J. Cave Karst Stud., 2007, vol. 69, pp. 163–178.

    Google Scholar 

  3. Baskar, S., Baskar, R., Mauclaire, L., and McKenzie, J.A., Microbially induced calcite precipitation in culture experiments: possible origin for stalactites in Sahastradhara caves, Dehradun, India, Curr. Sci., 2006, vol. 90, pp. 58–64.

  4. Beech, I.B., Zinkevich, V., Tapper, R., Gubner, R., and Avci, R., Study of the interaction of sulphate-reducing bacteria exopolymers with iron using X-ray photoelectron spectroscopy and time-of-flight secondary ionisation mass spectrometry, J. Microbiol. Methods, 1999, vol. 36, pp. 3–10.

    Article  CAS  Google Scholar 

  5. Bersenev, Yu. I., Karst Dal’nego Vostoka (Karst of the Far East), Moscow: Nauka, 1989.

  6. Bindschedler, S., Cailleau, G., Braissant, O., Millière, L., Job, D., and Verrecchia E.P., Unravelling the enigmatic origin of calcitic nanofibres in soils and caves: purely physicochemical or biogenic processes?, Biogeosci., 2014, vol. 11, pp. 2809–2825.

    Article  CAS  Google Scholar 

  7. Braissant, O., Decho, A.W., Duprazi, C., Glunk, C., Przekop, K.M., and Visscher, P.T., Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals, Geobiology, 2007, vol. 5, pp. 401–411.

    Article  CAS  Google Scholar 

  8. Cacchio, P., Ferrini, G., Ercole, C., Del Gallo, M., and Lepidi, A., Biogenicity and characterization of moonmilk in the Grotta Nera (Majella National Park, Abruzzi, central Italy), J. Cave Karst Stud., 2014, vol. 76, pp. 88–103.

    Article  Google Scholar 

  9. Cailleau, G., Verrecchia, E.P., Braissant, O., and Emmanuel, L. The biogenic origin of needle fibre calcite, Sedimentology, 2009, vol. 56, pp. 1858–1875.

    Article  CAS  Google Scholar 

  10. Costerton, J.W., The Biofilm Primer, Berlin: Springer, 2007.

    Book  Google Scholar 

  11. Dupraz, C., Reid, R.P., Braissant, O., Decho, A.W., Norman, R.S., and Visscher, P.T. Processes of carbonate precipitation in modern microbial mats, Earth-Sci. Rev., 2009, vol. 96, pp. 141–162.

    Article  CAS  Google Scholar 

  12. Ercole, C., Cacchio, P., Botta, A.L., Centi, V., and Lepidi, A. bacterially induced mineralization of calcium carbonate: the role of exopolysaccharides and capsular polysaccharides, Microscopy Microanalysis, 2007, vol. 13, pp. 42–50.

    Article  CAS  Google Scholar 

  13. Farah, C., Vera, M., Morin, D., Haras, D., Jerez, C.A., and Guiliani, N., Evidence for a functional quorum-sensing type AI-1 system in the extremophilic bacterium Acidithiobacillus ferrooxidans,Appl. Environ. Microbiol., 2005, vol. 71, no. 11, pp. 7033–7040.

    Article  CAS  Google Scholar 

  14. Flemming, H.C. and Wingender, J., The biofilm matrix, Nature Rev. Microbiol., 2010, vol. 8, no. 9, pp. 623–633.

    Article  CAS  Google Scholar 

  15. Ghosh, S., Paine, E., Wall, R., Kam, G., Lauriente, T., Sangarmangkang, P.C., Derrick Horne, D., and Cheeptham, N., In situ cultured bacterial diversity from iron Curtain Cave, Chilliwack, British Columbia, Canada, Diversity, 2017, vol. 9, no. 3, pp. 1–15. https://doi.org/10.3390/d9030036

    Article  Google Scholar 

  16. Hill, C.A. and Forti, P., Cave mineralogy and the NSS: past, present, future, J. Cave Karst Stud., 2007, vol. 69, pp. 35–45.

    Google Scholar 

  17. Kondratyeva, L.M., Polevskaya, O.S., Litvinenko, Z. N., Golubeva, E.M., and Konovalova, N.S., Role of the microbial community in formation of speleothem (moonmilk) in the Snezhnaya carst cave (Abkhazia), Microbiology (Moscow), 2016, vol. 85, no. 5, pp. 629–637.

    Article  CAS  Google Scholar 

  18. Kubista, M., Andrade, J.M., Bengtsson, M., Forootan, A., Jonake, J., Lind, K., Sindelka, R., Sjoback, R., Sjogreen, B., Strombom, L., Stahlberg, A., and Zoric, N., The real-time polymerase chain reaction, Mol. Aspects Med., 2006, vol. 27, pp. 95–125.

    Article  CAS  Google Scholar 

  19. Maciejewska, M., Adam, D., Naômé, A., Martinet, L., Tenconi, E., Całusińska, M., Delfosse, P., Hanikenne, M., Baurain, D., Compère, P., Carnol, M., Barton, H.A., and Rigali, S., Assessment of the potential role of Streptomyces in cave moonmilk formation, Front. Microbiol., 2017, vol. 8, pp. 1181–1199.

    Article  Google Scholar 

  20. Makhinov, A.N., Kryukova, M.V., and Makhinova, M.V., Role of karst phenomena in formation of the valley landscape of the River Sagdy-Selanka (Central Sikhote-Alin), Vestn. DVO RAN, 2016, no. 5, pp. 86–93.

  21. Maksimovich, N.G. and Khmurchik, V.T., Effect of microorganisms on the mineral composition and properties of soils, Vestn. Perm.Univ., 2012, vol. 3, no. 16, pp. 47–54.

    Google Scholar 

  22. Mazina, S.E. and Semikolennykh, A.A., Different moonmilk forms in Russia in the light of their genesis, Peshchery, 2010, no. 33, pp. 34–44.

  23. Mitchell, A.C. and Ferris, F.G., The influence of Bacillus pasteurii on the nucleation and growth of calcium carbonate, Geomicrobiol. J., 2006, vol. 23, pp. 213–226.

    Article  CAS  Google Scholar 

  24. Müller, W.E., Schlossmacher, U., Schröder, H.C., Lieberwirth, I., Glasser, G., Korzhev, M., Neufurth, M., and Wang, X., Enzyme-accelerated and structure-guided crystallization of calcium carbonate: role of the carbonic anhydrase in the homologous system, Acta Biomaterialia, 2017, vol. 10, no. 1, pp. 450–462.

    Article  Google Scholar 

  25. Nikolaev, Yu.A. and Plakunov, V.K., Biofilm—“city of microbes” or an analogue of multicellular organisms?, Microbiology (Moscow), 2007, vol. 76, no. pp. 125–138.

  26. Perry, T.D., Duckworth, O.W., McNamara, C.J., Martin, S.T., and Mitchell, R., Effects of the biologically produced polymer alginic acid on macroscopic and microscopic calcite dissolution rates, Environ. Sci. Technol., 2004, vol. 38, pp. 3040–3046.

    Article  CAS  Google Scholar 

  27. Porca, E., Jurado, V., Zgur-Bertok, D., Saiz-Jimenez, C., and Pasic, L., Comparative analysis of yellow microbial communities growing on the walls of geographically distinct caves indicates a common core of microorganisms involved in their formation, FEMS Microbiol. Ecol., 2012, vol. 81, pp. 255–266.

    Article  CAS  Google Scholar 

  28. Portillo, M.C. and Gonzales, J.M., Moonmilk deposits originate from specific bacterial communities in Altamira Cave (Spain), Microb. Ecol., 2011, vol. 61, pp. 182–189.

    Article  Google Scholar 

  29. Ras, M., Lefebvre, D., Derlon, N., Paul, E., and Girbal-Neuhauser, E., Extracellular polymeric substances diversity of biofilms grown under contrasted environmental conditions, Water Research, 2011, vol. 45, no. 4, pp. 1529–1538.

    Article  CAS  Google Scholar 

  30. Reitschuler, C., Spötl, C., Hofmann, K., Wagner, A.O., and Illmer, P., Archaeal distribution in moonmilk deposits from Alpine caves and their ecophysiological potential, Microb. Ecol., 2016, vol. 71, no. 3, pp. 686–699.

    Article  CAS  Google Scholar 

  31. Shadrina, O.S. and Kondrat’eva, L.M., Patterns of formation of the moonmilk speleothem in the cave Proshchal’naya (Khabarovsk krai), Vopr. Geogr., 2018, no. 147, pp. 322–341.

  32. Shankar, N. and Achyuthan, H., Genesis of calcic and petrocalcic horizons from Coimbatore, Tamil Nadu: micromorphology and geochemical studies, Quaternary International, 2007, vol. 175, pp. 140–154.

    Article  Google Scholar 

  33. Summers, E.A., Paoletti, M.G., Beggio, M., Dorigo, L., Pamio, A., Gomiero, T., Furlan, C., Brilli, M., Dreon, A.L., Bertoni, R., and Squartini, A., Comparative microbial community composition from secondary carbonate (moonmilk) deposits: implications for the Cansiliella servadeii cave hygropetric food web, Int. J. Speleol., 2013, vol. 42, no. 3, pp. 181–192.

    Article  Google Scholar 

  34. Sutherland, I.A., The biofilm matrix–an immobilized but dynamic microbial environment, Trends Microbiol., 2001, vol. 9, pp. 222–227.

    Article  CAS  Google Scholar 

  35. Vasil’ev, D.A., Kaldyrkaev, A.I., Feoktistova, N.A., and Aleshkin, A.V., Identifitatsiya bakteriiBacillus cereusna osnove ikh fenotipicheskoi kharakteristiki (Identification of Bacillus cereus Bacteria Based on Their Phenotypic Characterization), Ul’yanovsk: NIITs GSKhA, 2013.

  36. Zavarzin, G.A. and Kolotilova, N.N., Vvedeine v prirodovedcheskuyu mikrpbiologiyu (Introduction to Natural History Microbiology), Moscow: Universitet, 2001.

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.O. Shadrin, the leader of the expedition to the Proshchal’naya cave in 2015–2017 and to N.S. Konovalova for scanning electron microscopy and to our colleagues for their help in sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. N. Litvinenko.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratyeva, L.M., Shadrina, O.S., Litvinenko, Z.N. et al. Microbial Biofilms in the Proshchal’naya Karst Cave (Far East, Russia). Microbiology 89, 532–541 (2020). https://doi.org/10.1134/S0026261720050124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261720050124

Keywords:

Navigation