Skip to main content
Log in

Microorganisms as phytase producers

  • Reviews
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Replenishing of the stores of inorganic phosphate is among the most urgent environmental problems. In soil, phosphorus within inorganic compounds is mostly (over 80%) present as insoluble, phytic acid-based conglomerates. Phytates are strong chelating agents, binding the cations of bivalent metals, as well as peptides and low-molecular metabolites into resilient poorly degradable compounds. Their hydrolysis in nature is carried out by microbial phytases, which may potentially be used for an innovative microbial technology. The review deals with microbial degradation of the derivatives of phytic acid. Bacterial species capable of phytase synthesis for stepwise specific cleaving of phytates and their derivatives are discussed. Information analysis was carried out in order to search for the genes encoding phytases in bacterial genomes. Directional modification of the genes of bacterial phytases in order to develop new biotechnologies for agriculture and forage industry is considered. Application of microbial enzymes in agriculture and medicine is analyzed. Bacteria phytases are concluded to have a high practical potential. Microbiology is capable of providing the theoretical and experimental basis for development of the new biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mullen, M.D., Phosphorus in Soil: Biological Interactions, in Encyclopedia of Soils in the Environment, Oxford: Elsevier, 2005, pp. 210–215.

    Google Scholar 

  2. Dai, F., Qiu, L., Ye, L., Wu, D., Zhou, M., and Zhang, G., Identification of a Phytase Gene in Barley (Hordeum vulgare L.), PLoS One, 2011, vol. 6, no. 4, p. 18829.

    Article  Google Scholar 

  3. Kartsev, V.G., Izbrannye metody sinteza i modifikatsii geterotsiklov (Some Methods for Synthesis and Modification of Heterocyclic Compounds), Moscow: IBS PRESS, 2003.

    Google Scholar 

  4. George, T.S., Richardson, A.E., Li, S.S., Gregory, P.J., and Daniell, T.J., Extracellular Release of a Heterologous Phytase from Roots of Transgenic Plants: Does Manipulation of Rhizosphere Biochemistry Impact Microbial Community Structure, FEMS Microbiol. Ecol., 2009, vol. 70, pp. 433–445.

    Article  PubMed  CAS  Google Scholar 

  5. Posternak, M.S., Sur un nouveau principe phosphororganique d’origine vegetale, la phytine, Comptes Rendus des Sances de la Societe de Biologie et de Ses Filiales, 1903, pp. 1190–1192.

  6. Onyango, E.M. and Adeola, O., Inositol Hexaphosphate Increases Mucin Loss from the Digestive Tract of Ducks, J. Anim. Physiol. Anim. Nutr. (Berl.), 2011, Arp. 27. Epub.

  7. Azeke, M.A., Elsanhoty, R.M., Egielewa, S.J., and Eigbogbo, M.U., The Effect of Germination on the Phytase Activity, Phytate and Total Phosphorus Contents of Some Nigerian-Grown Grain Legumes, J. Sci. Food Agric., 2011, vol. 15, no. 91(1), pp. 75–79.

    Article  Google Scholar 

  8. Bohn, L., Meyer, A.S., and Rasmussen, S.K., Phytate: Impact on Environment and Human Nutrition. A Challenge for Molecular Breeding, J. Zhejiang Univ. Sci. B, 2008, vol. 9, no. 3, pp. 165–191.

    Article  PubMed  CAS  Google Scholar 

  9. Podobed, L.I. and Parkhomenko, A.A., Practical Application of Phytases as Factors Increasing Nutritional Value of the Rations and Economy of Energetic Space Therein, Enzimologiya, 2007, vol. 4, pp. 11–16.

    Google Scholar 

  10. Peritch, L., Application of Phytase for Poultry Feeding, Eurofarmer, 2006, vol. 5, pp. 25–48.

    Google Scholar 

  11. Suzuki, U. and Takaishi, M., Ueber Ein Enzym’ Phytase’ Das’ Anhydro-Oxy-Methylen Diphosphorsaure’ Spaltet, Tokyo Imper. Univ. College Agr. Bull., 1907, vol. 7, pp. 503–512.

    Google Scholar 

  12. Greiner, R., Phytate-Degrading Enzymes: Regulation of Synthesis in Microorganisms and Plants, in Inositol Phosphates: Linking Agriculture and the Environment, Turner, B.L., Richardson, A.E., and Mullaney, E.J., Eds., CAB International, 2007, pp. 78–96.

  13. Jorquera, M., Martinez, O., Maruyama, F., Marschner, P., and de la Luz Mora, L., Current and Future Biotechnological Applications of Bacterial Phytases and Phytase-Producing Bacteria, Microbes Environ., 2008, vol. 23, pp. 182–191.

    Article  PubMed  Google Scholar 

  14. Lei, X.G., Porres, J.M., Mullaney, E.J., Pedersen, H.B., Polaina, J., and Maccabe, A.P., Phytase: Source, Structure and Application, Industrial Enzymes, 2007, pp. 505–529.

  15. Rao, D.E., Rao, K.V., Reddy, T.P., and Reddy, V.D., Molecular Characterization, Physicochemical Properties, Known and Potential Applications of Phytases: An Overview, Crit Rev Biotechnol., 2009, vol. 29, no. 2, pp. 182–198.

    Article  PubMed  CAS  Google Scholar 

  16. Guimara~es, L.H.S., Peixoto-Nogueira, S.C., Michelin, M., Rizzatti, A.C.S., Sandrim, V.C., Zanoelo, F.F., Aquino, A.C., Junior, A.B., and Polizeli, M., Screening of Filamentous Fungi for Production of Enzymes of Biotechnological Interest, Brazil. J. Microbiol., 2006, vol. 37, pp. 474–480.

    Article  CAS  Google Scholar 

  17. Greaves, M.P., Anderson, G., and Webley, D.M., The Hydrolysis of Inositol Phosphates by Aerobacter aerogenes, Biochem. Biophys. Acta, 1967, vol. 15, no. 132, pp. 412–418.

    Google Scholar 

  18. Irving, G.C. and Cosgrove, D.J., Inositol Phosphate Phosphatases of Microbiological Origin. Some Properties of a Partially Purified Bacterial (Pseudomonas sp.) Phytase, Aust. J. Biol. Sci., 1971, pp. 547–557.

  19. Powar, V.K. and Jagannathan, V., Phytase from Bacillus subtilis, Indian J. Biochem., 1967, vol. 4, no. 3, pp. 184–185.

    PubMed  CAS  Google Scholar 

  20. Shah, V. and Parekh, L.J., Phytase from Klebsiella sp. no. PG-2: Purification and Properties, Indian J. Biochem. Biophys., 1990, vol. 27, no. 2, pp. 98–102.

    PubMed  CAS  Google Scholar 

  21. Greiner, R., Konietzny, U., and Jany, K.D., Purification and Characterization of Two Phytases from Escherichia coli, Arch. Biochem. Biophys., 1993, vol. 15, no. 303, pp. 107–113.

    Article  Google Scholar 

  22. Yoona, S.J., Choia, Y.J., Mina, H.K., Choa, K.K., Kimb, J.W., Leeb, S.C., and Jungb, Y.H., Isolation and Identification of Phytase-Producing Bacterium, Enterobacter sp. 4, and Enzymatic Properties of Phytase Enzyme, Enz. Microb. Technol., 1996, vol. 18, no. 6, pp. 449–454.

    Article  Google Scholar 

  23. Kim, Y.O., Lee, J.K., Kim, H.K., Yu, J.H., and Oh, T.K., Cloning of the Thermostable Phytase Gene (phy) from Bacillus sp. DS11 and Its Overexpression in Escherichia coli, FEMS Microbiol. Lett., 1998, vol. 162, no. 1, pp. 185–191.

    Article  PubMed  CAS  Google Scholar 

  24. Simon, O. and Igbasan, F., In vitro Properties of Phytases from Various Microbial Origins, Int. J. Food Sci. Technol., 2002, vol. 37, pp. 813–822.

    Article  CAS  Google Scholar 

  25. Andlid, T.A., Veide, J., and Sandberg, A.S., Metabolism of Extracellular Inositol Hexaphosphate (Phytate) by Saccharomyces cerevisiae, Int. J. Food Microbiol., 2004, vol. 97, no. 2, pp. 157–169.

    Article  PubMed  CAS  Google Scholar 

  26. Raghavendra, P. and Halami, P.M., Screening, Selection and Characterization of Phytic Acid Degrading Lactic Acid Bacteria from Chicken Intestine, Int. J. Food Microbiol., 2009, vol. 133, pp. 129–134.

    Article  PubMed  CAS  Google Scholar 

  27. Greiner, R. and Sajidan, I., Production of D-MyoInositol(1,2,4,5,6)Pentakisphosphate Using Alginate-Entrapped Recombinant Pantoea agglomerans Glucose-1-Phosphatase, Braz. Arch. Biol. Technol., 2008, vol. 51, no. 2, pp. 235–246.

    Article  CAS  Google Scholar 

  28. Mullaney, E.J. and Ullah, A.H.J., Attributes, Catalytic Mechanisms and Applications, in Inositol Phosphates: Linking Agriculture and the Environment, Turner, B.L., Richardson, A.E., and Mullaney, E.J., Eds., CAB International, 2007, pp. 97–110.

  29. Rigden, D.J., The Histidine Phosphatase Superfamily: Structure and Function, Biochem. J., 2008, vol. 409, no. 2, pp. 333–148.

    Article  PubMed  CAS  Google Scholar 

  30. Shivange, A.V., Schwaneberg, U., and Roccatano, D., Conformational Dynamics of Active Site Loop in Escherichia coli Phytase, Biopolymers, 2010, vol. 93, no. 11, pp. 994–1002.

    Article  PubMed  CAS  Google Scholar 

  31. Kim, O.H., Kim, Y.O., Shim, J.H., Jung, Y.S., Jung, W.J., Choi, W.C., Lee, H., Lee, S.J., Kim, K.K., Auh, J.H., Kim, H., Kim, J.W., Oh, T.K., and Oh, B.C., β-Propeller Phytase Hydrolyzes Insoluble Ca(2+)-Phytate Salts and Completely Abrogates the Ability of Phytate to Chelate Metal Ions, Biochemistry, 2010, vol. 49, no. 47, pp. 10216–10227.

    Article  PubMed  CAS  Google Scholar 

  32. Yanke, L.J., Bae, H.D., Selinger, L.B., and Cheng, K.J., Phytase Activity of Anaerobic Ruminal Bacteria, Microbiology (UK), 1998, vol. 144, pp. 1565–1573.

    Article  CAS  Google Scholar 

  33. Nakashima, B.A., McAllister, T.A., Sharma, R., and Selinger, L.B., Diversity of Phytases in the Rumen, Microb. Ecol., 2007, vol. 53, no. 1, pp. 82–88.

    Article  PubMed  CAS  Google Scholar 

  34. Dionisio, G., Brinch-Pedersen, H., Welinder, K.G., and Jorgensen, M., Different Site-Specific N-Glycan Types in Wheat (Triticum aestivum L.) PAP Phytase, Phytochemistry, 2011, Feb 15, Epub.

  35. Rodriguez, E., Mullaney, E.J., and Ley, X.G., Expression of the Aspergillus fumigates Phytase Gene in Pichia pastoris and Characterization of the Recombinant Enzyme, Biochem. Biophys. Res. Comm., 2000, vol. 268, pp. 373–378.

    Article  PubMed  CAS  Google Scholar 

  36. Golovan, S., Wang, G., Zhang, J., and Forsberg, C.W., Characterization and Overproduction of the Escherichia coli appA Encoded Bifunctional Enzyme That Exhibits Both Phytase and Acid Phosphatase Activities, Can. J. Microbiol., 2000, vol. 46, pp. 59–71.

    Article  PubMed  CAS  Google Scholar 

  37. Kerovuo, J., Lappalainen, I., and Reinikainen, T., The Metal Dependence of Bacillus subtilis Phytase, BBRC, 2000, vol. 268, pp. 365–369.

    PubMed  CAS  Google Scholar 

  38. Ireland, M.M., Karty, J.A., Quardokus, E.M., Reilly, J.P., and Brun, Y.V., Proteomic Analysis of the Caulobacter crescentus Stalk Indicates Competence for Nutrient Uptake, Mol. Microbiol., 2002, vol. 45, no. 4, pp. 1029–1041.

    Article  PubMed  CAS  Google Scholar 

  39. Sihvonen, L.M., Lyra, C., Fewer, D.P., Rajaniemi-Wacklin, P., Lehtimäki, J.M., Wahlsten, M., and Sivonen, K., Strains of the Cyanobacterial Genera Calothrix and Rivularia Isolated from the Baltic Sea Display Cryptic Diversity and Are Distantly Related to Gloeotrichia and Tolypothrix, FEMS Microbiol. Ecol., 2007, vol. 61, no. 1, pp. 74–84.

    Article  PubMed  CAS  Google Scholar 

  40. McDonald, A.E., Niere, J.O., and Plaxton, W.C., Phosphite Disrupts the Acclimation of Saccharomyces cerevisiae to Phosphate Starvation, Can. J. Microbiol., 2001, vol. 47, no. 11, pp. 969–978.

    PubMed  CAS  Google Scholar 

  41. Cho, J., Lee, C., Kang, S., Lee, J., Lee, H., Bok, J., Woo, J., Moon, Y., and Choi, Y., Molecular Cloning of a Phytase Gene (phy M) from Pseudomonas syringae MOK1, Curr. Microbiol., 2005, vol. 51, no. 1, pp. 11–15.

    Article  PubMed  CAS  Google Scholar 

  42. Huang, H., Luo, H., Wang, Y., Fu, D., Shao, N., Yang, P., Meng, K., and Yao, B., Novel Low-Temperature-Active Phytase from Erwinia carotovora var. carotovota ATCC 10276, J. Microbiol. Biotechnol., 2009, vol. 19, no. 10, pp. 1085–1091.

    PubMed  CAS  Google Scholar 

  43. Guo, D., Zhou, H., Wu, Y., Zhou, F., Xu, G., Wen, H., and Zhang, X., Involvement of ERK1/2/NF-κB Signal Transduction Pathway in TF/FVIIa/PAR2-Induced Proliferation and Migration of Colon Cancer Cell SW620, Tumour Biol., 2011, May 28, Epub.

  44. DeVinney, R., Steele-Mortimer, O., and Finlay, B.B., Phosphatases and Kinases Delivered to the Host Cell by Bacterial Pathogens, Trends Microbiol., 2000, vol. 8, no. 1, pp. 29–33.

    Article  PubMed  CAS  Google Scholar 

  45. Jermutus, L., Tessier, M., Pasamontes, L., van Loon, A.P., and Lehmann, M., Structure-Based Chimerie Enzymes as an Alternative to Direct Enzyme Evolution: Phytase as a Test Case, J. Biotechnol., 2001, vol. 85, pp. 15–24.

    Article  PubMed  CAS  Google Scholar 

  46. Lehmann, M., Loch, C., Middendorf, A., Studer, D., Lassen, S.F., Pasamontes, L., van Loon, A.P., and Wyss, M., The Consensus Concept for Thermostability Engineering of Proteins: Further Proof of Concept, Protein Eng., 2002, vol. 15, no. 5, pp. 403–411.

    Article  PubMed  CAS  Google Scholar 

  47. George, T.S., Simpson, R.J., Hadobas, P.A., and Richardson, A.E., Expression of a Fungal Phytase Gene in Nicotiana tabacum Improves Phosphorus Nutrition of Plant Growth in Amended Soils, Plant Biotechnol. J., 2005, vol. 3, pp. 129–140.

    Article  PubMed  CAS  Google Scholar 

  48. Niranjana, S.R. and Hariprasad, P., Isolation and Characterization of Phosphate Solubilizing Rhizobacteria to Improve Plant Health of Tomato, Plant Soil, 2009, vol. 316, pp. 13–24.

    Article  Google Scholar 

  49. Mudge, S.R., Smith, F.W., and Richardson, A.E., Root-Specific and Phosphate-Regulated Expression of Phytase under the Control of a Phosphate Transporter Promoter Enables Arabidopsis to Grow on Phytate as a Sole P Source, Plant Sci., 2006, vol. 165, pp. 871–878.

    Article  Google Scholar 

  50. Richardson, A.E., George, T.S., Hens, M., and Simpson, R.J., Utilization of Soil Organic Phosphorus by Higher Plants, Organic Phosphorus in the Environment, Wallingford: CABI, 2005, pp. 165–184.

    Chapter  Google Scholar 

  51. Idriss, E.E., Makarewicz, O., Farouk, A., Rosner, K., Greiner, R., Bochow, H., Richter, T., and Borriss, R., Extracellular Phytase Activity of Bacillus amyloliquefaciens FZB45 Contributes to Its Plant-Growth-Promoting Effect, Microbiology (UK), 2002, vol. 148, pp. 2097–2109.

    CAS  Google Scholar 

  52. Makarewicz, O., Dubrac, S., Msadek, T., and Borriss, R., Dual Role of the PhoP-P Response Regulator: Bacillus amyloliquefaciens FZB45 Phytase Gene Transcription Is Directed by Positive and Negative Interactions with the phyC Promoter, J. Bacteriol., 2006, vol. 188, pp. 6953–6965.

    Article  PubMed  CAS  Google Scholar 

  53. Chu, G.M., Komori, M., Hattori, R., and Matsui, T., Dietary Phytase Increases the True Absorption and Endogenous Fecal Excretion of Zinc in Growing Pigs Given a Corn-Soybean Meal Based Diet, Anim. Sci. J., 2009, vol. 80, no. 1, pp. 46–51.

    Article  PubMed  CAS  Google Scholar 

  54. Shamsuddin, M. and Vucenik, I., IP6 and Inositol in Cancer Prevention and Therapy, Cur. Cancer Therapy Rev., 2005, vol. 1, pp. 259–269.

    Article  CAS  Google Scholar 

  55. Carlsson, N. and Greiner, R., Myo-Inositol Phosphate Isomers Generated by the Action of a Phytate-Degrading Enzyme from Klebsiella terrigena on Phytate, Can. J. Microbiol., 2006, vol. 52, pp. 759–768.

    Article  PubMed  Google Scholar 

  56. Shin, S., Juan Gallegos-López, A., Gerardo Carreón-Treviño, J., Castillo-Galván, M., Rojo-Domínguez, A., and Guerrero-Olazarán, M., Design of Thermostable Beta-Propeller Phytases with Activity over a Broad Range of pHs and Their Overproduction by Pichia pastoris, Appl. Environ. Microbiol., 2010, vol. 76, no. 19, pp. 6423–6430.

    Article  Google Scholar 

  57. Fugthong, A., Boonyapakron, K., Sornlek, W., Tanapongpipat, S., Eurwilaichitr, L., and Pootanakit, K., Biochemical Characterization and in vitro Digestibility Assay of Eupenicillium parvum (BCC17694) Phytase Expressed in Pichia pastoris, Prot. Express. Purification, 2010, vol. 70, pp. 60–67.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Sharipova.

Additional information

Original Russian Text © A.D. Mukhametzyanova, A.I. Akhmetova, M.R. Sharipova, 2012, published in Mikrobiologiya, 2012, Vol. 81, No. 3, pp. 291–300.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhametzyanova, A.D., Akhmetova, A.I. & Sharipova, M.R. Microorganisms as phytase producers. Microbiology 81, 267–275 (2012). https://doi.org/10.1134/S0026261712030095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261712030095

Keywords

Navigation