Skip to main content
Log in

Heat Capacity and Thermodynamic Functions of PdS

  • Published:
Inorganic Materials Aims and scope

Abstract

The temperature-dependent heat capacity of vysotskite, PdS, has been determined for the first time by adiabatic, relaxation, and differential scanning calorimetry in a wide temperature range and standard thermodynamic functions of PdS have been calculated. The 298.15-K values thus obtained are = 43.65 ± 0.09 J/(mol K), S° = 51.98 ± 0.10 J/(mol K), Н°(298.15 К) − Н°(0) = 8.03 ± 0.02 kJ/mol, and Ф° = 25.03 ± 0.05 J/(mol K). Using the present results and data in the literature, we obtained ΔfH°(PdS, 298.15 K)  = –74.0 ± 1.0 kJ/mol and ΔfG°(PdS, 298.15 K) = –68.7 ± 1.0 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Gaskell, T.F., The structure of braggite and palladium sulphide, Z. Kristallogr., 1937, vol. 96, pp. 203–213.

    CAS  Google Scholar 

  2. Gronvold, F. and Rost, E., On the sulfides, selenides and tellurides of palladium, Acta Chem. Scand., 1956, vol. 10, pp. 1620–1634.

    Article  Google Scholar 

  3. Brese, N.E., Squattrto, P.J., and Ibers, J.A., Reinvestigation of the structure of PdS, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1985, vol. 41, pp. 1829–1830.

    Article  Google Scholar 

  4. Okamoto, H., Pd–S (palladium–sulfur), J. Phase Equilib., 1992, vol. 13, no. 1, pp. 106–107.

    Article  Google Scholar 

  5. Hummel, W., Berner, U., Curti, E., Pearson, F.J., and Thoenen, T., Nagra/PSI chemical thermodynamic database 01/01, Nagra Technical Report NTB 02-16, Wettingen, 2002, pp. 248–249.

    Google Scholar 

  6. Liu-Cheng Chen, Bin-Bin Jiang, Hao Yu, Hong-Jie Pang, Lei Su, Xun Shi, Li-Dong Chen, and Xiao-Jia Chen, Thermoelectric properties of polycrystalline palladium sulfide, RSC Adv., 2018, vol. 8, pp. 13154–13158. https://doi.org/10.1039/c8ra01613e

    Article  CAS  Google Scholar 

  7. Kullerud, G., Experimental techniques in dry sulfide research. Research Techniques for High Temperature and High Pressure, Ulmer, G.C., Ed., New York, 1971, pp. 288–315.

    Google Scholar 

  8. NIST. Atomic Weights and Isotopic Compositions. http://www.physics.nist.gov/PhysRefData/Compositions.

  9. Malyshev, V.M., Mil’ner, G.A., Sorkin, E.L., and Shibakin, V.F., Automatic low temperature calorimeter, Prib. Tekh. Eksp., 1985, vol. 6, pp. 195–197.

    Google Scholar 

  10. Lashley, J.C., Hundley, M.F., Migliori, A., Sarrao, J.L., Pagliuso, P.G., Darling, T.W., Jaime, M., Cooley, J.C., Hults, W.L., Morales, L., Thoma, D.J., Smith, J.L., Boerio-Goates, J., Woodfield, B.F., Stewart, G.R., Fisher, R.A., and Phillips, N.E., Critical examination of heat capacity measurements made on a Quantum Design physical property measurement system, Cryogenics, 2003, vol. 43, pp. 369–378.

    Article  CAS  Google Scholar 

  11. Gurevich, V.M. and Khlyustov, V.G., Calorimeter for determining low-temperature heat capacity of minerals. Heat capacity of quartz from 9 to 300 K, Geokhimiya, 1979, no. 6, pp. 829–839.

  12. Sassani, D.C. and Shock, E.L., Solubility and transport of platinum-group elements in supercritical fluids: summary and estimates of thermodynamic properties for ruthenium, rhodium, palladium, and platinum solids, aqueous ions and complexes to 1000°C and 5 kbar, Geochim. Cosmochim. Acta, 1998, vol. 62, pp. 2643–2671.

    Article  CAS  Google Scholar 

  13. Karzhavin, V.K., Sulfides, selenides, and tellurides of platinum and palladium: estimation of thermodynamic properties, Geochem. Int., 2007, vol. 45, no. 9, pp. 931–937.

    Article  Google Scholar 

  14. Quan Shi., Snow, C.L., Boerio-Goates, J., Woodfield, B.F., Accurate heat capacity measurements on powdered samples using a Quantum Design physical property measurement system, J. Chem. Thermodyn., 2010, vol. 42, pp. 1107–1115. https://doi.org/10.1016/j.jct.2010.04.008

    Article  CAS  Google Scholar 

  15. Medvedev, V.A., Bergman, G.A., et al., Termicheskie konstanty veshchestv (Thermal Constants of Substances), Glushko, V.P., Ed., Moscow: VINITI, 1972, issue VI, pp. 322–323.

  16. Niwa, K., Yokokawa, T., and Isoya, T., Equilibria in the PdS–H2–Pd4S–H2S and Pd4S–H2–Pd–H2S systems, Bull. Chem. Soc. Jpn., 1962, vol. 35, pp. 1543–1545.

    Article  CAS  Google Scholar 

  17. Biltz, W. and Laar, J., Tensionsanalyse der hoheren Palladiumsulfide, Z. Anorg. Chem., 1936, vol. 228, pp. 257–267.

    Article  CAS  Google Scholar 

  18. Pankratz, L.B., Thermodynamic Properties of Elements and Oxides, Washington, D.C.: U.S. Dept. Interior, Bur. Mines, 1982, no. 672.

  19. Naumov, G.B., Ryzhenko, B.N., and Khodakovsky, I.L., Spravochnik termodinamicheskikh velichin (A Handbook of Thermodynamic Quantities), Moscow: Atomizdat, 1971, p. 240.

  20. Cox, J.D., Wagman, D.D., and Medvedev, V.A., CODATA Key Values for Thermodynamics, New York: Hemisphere, 1989.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This research became possible by virtue of the thermodynamic database created by Dr. Sci. (Chem.), Prof. I.L. Khodakovskii (1941–2012).

In this work, we used equipment at the Shared Physical Characterization Facilities Center, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Funding

The study of the heat capacity of PdS in this work was supported by the Russian Federation Ministry of Science and Higher Education (state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, basic research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Polotnyanko.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polotnyanko, N.A., Tyurin, A.V., Chareev, D.A. et al. Heat Capacity and Thermodynamic Functions of PdS. Inorg Mater 56, 683–689 (2020). https://doi.org/10.1134/S0020168520070134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520070134

Keywords:

Navigation