Skip to main content
Log in

Mechanism of the Conversion of γ-Аl2О3 Nanopowder into Boehmite under Hydrothermal Conditions

  • Published:
Inorganic Materials Aims and scope

Abstract

We have developed a method for the preparation of boehmite (AlOOH) nanopowder with tailored properties (particle size from 10 to 40 nm, thermal conductivity below 0.02 W/(m K), specific surface area on the order of 65 m2/g, and loose bulk density in the range 0.02–0.04 g/cm3) by hydrothermal treatment of γ‑Аl2О3 nanopowder in a 1.5% HCl solution at 200°C. The steps of the process have been identified and it has been shown to be a solid-state (topochemical) transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Panasyuk, G.P., Azarova, L.A., Belan, V.N., Semenov, E.A., Danchevskaya, M.N., Voroshilov, I.L., Kozerozhets, I.V., Pershikov, S.A., and Kharatyan, S.Yu., Methods for high-purity aluminum oxide production for growth of leucosapphire crystals (review), Theor. Found. Chem. Eng., 2019, vol. 53, no. 4, pp. 596–603.https://doi.org/10.1134/S0040579518050196

    Article  CAS  Google Scholar 

  2. Panasyuk, G.P., Luchkov, I.V., Kozerozhets, I.V., Shabalin, D.G., and Belan, V.N., Effect of pre-heat treatment and cobalt doping of hydrargillite on the kinetics of the hydrargillite–corundum transformation in supercritical water fluid, Inorg. Mater., 2013, vol. 49, no. 9, pp. 899–903.https://doi.org/10.1134/S0020168513090136

    Article  CAS  Google Scholar 

  3. Panasyuk, G.P., Kozerozhets, I.V., Semenov, E.A., Danchevskaya, M.N., Azarova, L.A., and Belan, V.N., Thermodynamics and kinetics of γ-Al2O3 and AlOOH transformations under hydrothermal conditions, Inorg. Mater., 2019, vol. 55, no. 9, pp. 920–928.https://doi.org/10.1134/S0020168519090127

    Article  Google Scholar 

  4. Panasyuk, G.P., Kozerozhets, I.V., Semenov, E.A., Danchevskaya, M.N., Azarova, L.A., and Belan, V.N., Mechanism of phase transformations of γ-Al2O3 and Al(OH)3 into boehmite (AlOOH) during hydrothermal treatment, Inorg. Mater., 2019, vol. 55, no. 9, pp. 929–933.https://doi.org/10.1134/S0020168519090139

    Article  Google Scholar 

  5. Egorova, S.R. and Lamberov, A.A., Formation and distribution of phases during the dehydration of large hydrargillite floccules, Inorg. Mater., 2015, vol. 51, no. 4, pp. 331–338.https://doi.org/10.1134/S0020168515030024

    Article  CAS  Google Scholar 

  6. Zhang, L., Lu, W., Yan, L., Feng, Y., Bao, X., Ni, J., Shang, X., and Lv, Y., Hydrothermal synthesis and characterization of core/shell AlOOH microspheres, Microporous Mesoporous Mater., 2009, vol. 119, nos. 1–3, pp. 208–216.https://doi.org/10.1016/j.micromeso.2008.10.017

    Article  CAS  Google Scholar 

  7. Al’myasheva, O.V., Fedorov, B.A., Smirnov, A.V., and Gusarov, V.V., Size, morphology, and structure of zirconia nanopowder particles prepared under hydrothermal conditions, Nanosist.: Fiz., Khim.,Mat., 2010, vol. 1, no. 1, pp. 26–36.

    Google Scholar 

  8. Kirillova, S.A., Smirnov, A.V., Fedorov, B.A., Krasilin, A.A., Bugrov, A.N., Gareev, K.G., Gracheva, I.E., and Al’myashev, V.I., Morphology and size parameters of boehmite nanocrystals prepared under hydrothermal conditions, Nanosist.: Fiz., Khim.,Mat., 2012, vol. 3, no. 4, pp. 101–113.

    Google Scholar 

  9. Guangshe Li, Smith, R.L., Jr., Inomata, H., and Arai, K., Synthesis and thermal decomposition of nitrate-free boehmite nanocrystals by supercritical hydrothermal conditions, Mater. Lett., 2002, vol. 53, no. 3, pp. 175–179.https://doi.org/10.1016/S0167-577X(01)00472-4

    Article  CAS  Google Scholar 

  10. Panasyuk, G.P., Semenov, E.A., Kozerozhets, I.V., Azarova, L.A., Belan, V.N., Danchevskaya, M.N., Nikiforova, G.E., Voroshilov, I.L., and Pershikov, S.A., A new method of synthesis of nanosized boehmite (AlOOH) powders with a low impurity content, Dokl. Chem., 2018, vol. 483, no. 1, pp. 272–274.https://doi.org/10.1134/S0012500818110022

    Article  CAS  Google Scholar 

  11. Panasyuk, G.P., Belan, V.N., Voroshilov, I.L., Kozerozhets, I.V., Luchkov, I.V., Kondakov, D.F., and Demina, L.I., The study of hydrargillite and gamma-alumina conversion process in boehmite in different hydrothermal media, Theor. Found. Chem. Eng., 2013, vol. 47, no. 4, pp. 415–421.https://doi.org/10.1134/S0040579513040143

    Article  CAS  Google Scholar 

  12. Panasyuk, G.P., Belan, V.N., Voroshilov, I.L., and Kozerozhets, I.V., Hydrargillite → boehmite transformation, Inorg. Mater., 2010, vol. 46, no. 7, pp. 747–753.https://doi.org/10.1134/S0020168510070113

    Article  CAS  Google Scholar 

  13. Tsuchida, T., Hydrothermal synthesis of submicromter crystals of boehmite, J. Eur. Ceram. Soc., 2000, vol. 20, no. 11, pp. 1759–1764.

    Article  CAS  Google Scholar 

  14. Maryashkin, A.V., Ivakin, Yu.D., Danchevskaya, M.N., Murav’eva, G.P., and Kirikova, M.N., Synthesis of corundum doped with cerium in supercritical water fluid, Moscow Univ. Chem. Bull., 2011, vol. 66, no. 5, pp. 290–298.https://doi.org/10.3103/S0027131411050087

    Article  Google Scholar 

  15. Ivakin, Yu.D., Danchevskaya, M.N., Ovchinnikova, O.G., Murav’eva, G.P., and Kreisberg, V.A., The kinetics and mechanism of doped corundum structure formation in an water fluid, Russ. J. Phys. Chem. B, 2009, vol. 3, no. 7, pp. 1019–1034.https://doi.org/10.1134/S199079310907001X

    Article  Google Scholar 

  16. Panasyuk, G.P., Azarova, L.A., Belan, V.N., Semenov, E.A., Danchevskaya, M.N., Voroshilov, I.L., Kozerozhets, I.V., and Pershikov, S.A., Preparation of fine-grained corundum powders with given properties: crystal size and habit control, Theor. Found. Chem. Eng., 2018, vol. 52, no. 5, pp. 879–886.https://doi.org/10.1134/S0040579518050202

    Article  CAS  Google Scholar 

  17. Panasyuk, G.P., Kozerozhets, I.V., Danchevskaya, M.N., Ivakin, Yu.D., Murav’eva, G.P., and Izotov, A.D., A new method for synthesis of fine crystalline magnesium aluminate spinel, Dokl. Chem., 2019, vol. 487, no. 2, pp. 218–220.https://doi.org/10.1134/S0012500819080019

    Article  CAS  Google Scholar 

  18. Panasyuk, G.P., Semenov, E.A., Kozerozhets, I.V., Danchevskaya, M.N., Lukin, E.S., Belan, V.N., Voroshilov, I.L., Azarova, L.A., and Izotov, A.D., Production of high-flexural-strength corundum ceramics, Dokl. Chem., 2019, vol. 485, no. 2, pp. 116–122.https://doi.org/10.1134/S0012500819040049

    Article  CAS  Google Scholar 

  19. Svarovskaya, N.V., Bakina, O.V., Glazkova, E.A., Fomenko, A.N., and Lerner, M.I., Glass and cellulose acetate fibers-supported boehmite nanosheets for bacteria adsorption, Prog. Nat. Sci.–Mater. Int., 2017, vol. 27, no. 2, pp. 268–274.

    CAS  Google Scholar 

  20. Panasyuk, G.P., Kozerozhets, I.V., Semenov, E.A., Azarova, L.A., Belan, V.N., and Danchevskaya, M.N., A new method for producing a nanosized γ-Al2O3 powder, Russ. J. Inorg. Chem., 2018, vol. 63, no. 10, pp. 1303–1308.https://doi.org/10.1134/S0036023618100157

    Article  CAS  Google Scholar 

  21. Kiss, A.B., Keresztury, G., and Farkas, L., Raman and i.r. spectra and structure of boehmite (γ-AlOOH). Evidence for the recently discarded \(D_{{\text{h}}}^{{172}}\) space group, Spectrochim. Acta, Part A, 1980, vol. 36, no. 7, pp. 653–658.https://doi.org/10.1016/0584-8539(80)80024-9

    Article  Google Scholar 

  22. Farmer, V.C., Raman and i. r. spectra of boehmite (γ‑AlOOH) are consistent with \(D_{{\text{h}}}^{{162}}\) or \(C_{{\text{h}}}^{{52}}\) symmetry, Spectrochim. Acta, Part A, 1980, vol. 36, no. 6, pp. 585–586.https://doi.org/10.1016/0584-8539(80)80012-2

    Article  Google Scholar 

  23. Shephard, J.J., Dickie, S.A., and McQuillan, A.J., Structure and conformation of methyl-terminated poly(ethylene oxide)-bis[methylenephosphonate] ligands adsorbed to boehmite (AlOOH) from aqueous solutions. Attenuated total reflection infrared (ATR-IR) spectra and dynamic contact angles, Langmuir, 2010, vol. 26, no. 6, pp. 4048–4056.https://doi.org/10.1021/la903506q

    Article  CAS  PubMed  Google Scholar 

  24. Boquan Zhu, Binxiang Fang, and Xiangcheng Li, Dehydration reactions and kinetic parameters of gibbsite, Ceram. Int., 2010, vol. 36, no. 8, pp. 2493–2498.https://doi.org/10.1016/j.ceramint.2010.07.007

    Article  CAS  Google Scholar 

  25. Bokhimi, X., Toledo-Antonio, J.A., Guzman-Castillo, M.L., Mar-Mar, B., Hernandez-Beltran, F., and Navarrete, J., Dependence of boehmite thermal evolution on its atom bond lengths and crystallite size, J. Solid State Chem., 2001, vol. 161, pp. 319–326.https://doi.org/10.1006/jssc.2001.9320

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, basic research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kozerozhets.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozerozhets, I.V., Panasyuk, G.P., Semenov, E.A. et al. Mechanism of the Conversion of γ-Аl2О3 Nanopowder into Boehmite under Hydrothermal Conditions. Inorg Mater 56, 716–722 (2020). https://doi.org/10.1134/S0020168520070092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520070092

Keywords:

Navigation