Skip to main content
Log in

Synthesis of Boehmite Nanosized Powder (AlOOH) at Low Temperatures of Hydrothermal Treatment

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A method is proposed for the synthesis of nanoscale boehmite powder at low temperatures of hydrothermal treatment in 1.5 wt % HCl solution at 150 and 170°C and in water at 80, 100, and 130°C. The optimal parameters of hydrothermal treatment are found. The conversion stages of γ-Al2O3 to boehmite (AlOOH) are found; the process is solid-phase (topochemical). The physical and technological properties of boehmite nanopowder are studied. We have found that boehmite possesses similar properties despite the temperature of hydrothermal treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Oh, M.-H., Nho, J.-S., Cho, S.-B., et al., Novel method to control the size of well-crystalline ceria particles by hydrothermal method, Mater. Chem. Phys., 2010, vol. 124, no. 1, p. 134. https://doi.org/10.1016/j.matchemphys.2010.06.004

    Article  CAS  Google Scholar 

  2. Quan, Y., Fang, D., Zhang, X., et al., Synthesis and characterization of gallium oxide nanowires via a hydrothermal method, Mater. Chem. Phys., 2010, vol. 121, nos. 1–2, p. 142. https://doi.org/10.1016/j.matchemphys.2010.01.009

    Article  CAS  Google Scholar 

  3. Shan, H.-Y., Li, J., Li, S., et al., Epitaxial ZnO films grown on ZnO-buffered c-plane sapphire substrates by hydrothermal method, Appl. Surf. Sci., 2010, vol. 256, no. 22, p. 6743. https://doi.org/10.1016/j.apsusc.2010.04.083

    Article  CAS  Google Scholar 

  4. Kim, S.-J., Kim, H.-H., Kwon, J.-B., et al., Novel fabrication of various size ZnO nanorods using hydrothermal method, Microelectron. Eng., 2010, vol. 87, nos. 5–8, p. 1534. https://doi.org/10.1016/j.mee.2009.11.033

    Article  CAS  Google Scholar 

  5. Chen, Z. and He, X., Low-temperature preparation of nanoplated bismuth titanate microspheres by a sol-gel-hydrothermal method, J. Alloys Compd., 2010, vol. 497, nos. 1–2, p. 312. https://doi.org/10.1016/j.jallcom.2010.03.053

    Article  CAS  Google Scholar 

  6. Ding, M., Zhao, D., Yao, B., et al., The p-type ZnO film realized by a hydrothermal treatment method, Appl. Phys. Lett., 2011, vol. 98, no. 6, article no. 062102. https://doi.org/10.1063/1.3549304

    Article  CAS  Google Scholar 

  7. Sreekantan, S. and Wei, L.C., Study on the formation and photocatalytic activity of titanate nanotubes synthesized via hydrothermal method, J. Alloys Compd., 2010, vol. 490, nos. 1–2, p. 436. https://doi.org/10.1016/j.jallcom.2009.10.030

    Article  CAS  Google Scholar 

  8. Liu, R., Yang, W.D., and Chueng, H.J., Preparation and visible-light photocatalytic activity of TiO2 nanotubes from a hydrothermal method, Adv. Mater. Res., 2011, vols. 197–198, p. 786. https://doi.org/10.4028/www.scientific.net/amr.197-198.786

    Article  Google Scholar 

  9. Kometani, N. and Teranishi, T., Preparation of size-controlled silver nanoparticles by the hydrothermal method, Phys. Status Solidi C., 2010, vol. 7, nos. 11–12, p. 2644. https://doi.org/10.1002/pssc.200983783

    Article  CAS  Google Scholar 

  10. Manikandan, V., Jayanthi, P., Priyadharsan, A., et al., Green synthesis of pH-responsive Al2O3 nanoparticles: Application to rapid removal of nitrate ions with enhanced antibacterial activity, J. Photochem. Photobiol., A, 2019, vol. 371, p. 205. https://doi.org/10.1016/j.jphotochem.2018.11.009

    Article  CAS  Google Scholar 

  11. Ribut, S.H., Abdullah, C.A.C., Mustafa, M., et al., Influence of pH variations on zinc oxide nanoparticles and their antibacterial activity, Mater. Res. Express, 2019, vol. 6, no. 2, article no. 025016. https://doi.org/10.1088/2053-1591/aaecbc

    Article  CAS  Google Scholar 

  12. Mohanraj, V., Jayaprakash, R., Chandrasekaran, J., et al., Influence of pH on particle size, band-gap and activation energy of CdS nanoparticles synthesized at constant frequency ultrasonic wave irradiation, Mater. Sci. Semicond. Process., 2017, vol. 66, p. 131. https://doi.org/10.1016/j.mssp.2017.04.006

    Article  CAS  Google Scholar 

  13. Tang, Z., Kwon, H., Yi, M.Y., et al., Role of halide ions for controlling morphology of copper nanocrystals in aqueous solution, ChemistrySelect, 2017, vol. 2, no. 17, p. 4655. https://doi.org/10.1002/slct.201701173

    Article  CAS  Google Scholar 

  14. Wan, Y.Y. and Zhou, X.P., Formation mechanism of hafnium oxide nanoparticles by a hydrothermal route, RSC Adv., 2017, vol. 7, no. 13, p. 7763. https://doi.org/10.1039/c6ra26663k

    Article  CAS  Google Scholar 

  15. Mestanza, S.N.M., Ribeiro, A.O., De Souza Ribeiro, C.S., et al., Study of the influence of dynamics variables on the growth of silica nanoparticles, Inorg. Nano-Met.Chem., 2017, vol. 47, no. 6, p. 824. https://doi.org/10.1080/15533174.2016.1212226

    Article  CAS  Google Scholar 

  16. Podlogar, M., Recnik, A., Yilmazoglu, G., et al., The role of hydrothermal pathways in the evolution of the morphology of ZnO crystals, Ceram. Int., 2016, vol. 42, no. 14, p. 15358. https://doi.org/10.1016/j.ceramint.2016.06.181

    Article  CAS  Google Scholar 

  17. Egorova, S.R., Bekmukhamedov, G.E., Mukhamed’yarova, A.N., et al., On the nature of phase conversions and transformations in porous system in hydrothermal processing of χ-Al2O3 into boehmite, Russ. J. Appl. Chem., 2016, vol. 89, no. 5, p. 703. https://doi.org/10.1134/S1070427216050049

    Article  CAS  Google Scholar 

  18. Akiba, H., Ichiji, M., Nagao, H., et al., Effect of seeding and pH conditions on the size and shape of Au nanoparticles in reduction crystallization, Chem. Eng. Technol., 2015, vol. 38, no. 6, p. 1068. https://doi.org/10.1002/ceat.201400671

    Article  CAS  Google Scholar 

  19. Hai, C.X., Zhang, L.J., Zhou, Y., et al., Phase transformation and morphology evolution characteristics of hydrothermally prepared boehmite particles, J. Inorg. Organomet. Polym. Mater., 2018, vol. 28, no. 3, p. 643. https://doi.org/10.1007/s10904-017-0756-9

    Article  CAS  Google Scholar 

  20. Padilla, I., Lopez-Andres, S., and Lopez-Delgado, A., Effects of Different Raw Materials in the Synthesis of Boehmite and γ- and α-Alumina, J. Chem., 2019, article no. 5353490. https://doi.org/10.1155/2016/5353490

  21. Panasyuk, G.P., Kozerozhets, I.V., Semenov, E.A., et al., Mechanism of phase transformations of γ-Al2O3 and Al(OH)3 into boehmite (AlOOH) during hydrothermal treatment, Inorg. Mater., 2019, vol. 55, no. 9, p. 929. https://doi.org/10.1134/S0020168519090139

    Article  Google Scholar 

  22. Panasyuk, G.P., Belan, V.N., Voroshilov, I.L., et al., The study of hydrargillite and γ-alumina conversion process in boehmite in different hydrothermal media, Theor. Found. Chem. Eng., 2013, vol. 47, no. 4, p. 415. https://doi.org/10.1134/S0040579513040143

    Article  CAS  Google Scholar 

  23. Panasyuk, G.P., Belan, V.N., Voroshilov, I.L., et al., Hydrargillite → boehmite transformation, Inorg. Mater., 2010, vol. 46, no. 7, p. 747. https://doi.org/10.1134/S0020168510070113

    Article  CAS  Google Scholar 

  24. Panasyuk, G.P., Semenov, E.A., Kozerozhets, I.V., Azarova, L.A., Voroshilov, I.L., Belan, V.N., and Pershikov, S.A., RF Patent 2625388, 2015.

  25. Panasyuk, G.P., Kozerozhets, I.V., Danchevskaya, M.N., et al., A new method for synthesis of fine crystalline magnesium aluminate spinel, Dokl. Chem., 2019, vol. 487, no. 2, p. 218. https://doi.org/10.1134/S0012500819080019

    Article  CAS  Google Scholar 

  26. Panasyuk, G.P., Azarova, L.A., Belan, V.N., et al., Preparation of fine-grained corundum powders with given properties: Crystal size and habit control, Theor. Found. Chem. Eng., 2018, vol. 52, no. 5, p. 879. https://doi.org/10.1134/S0040579518050202

    Article  CAS  Google Scholar 

  27. Panasyuk, G.P., Semenov, E.A., Kozerozhets, I.V., et al., Production of high-flexural-strength corundum ceramics, Dokl. Chem., 2019, vol. 485, no. 2, p. 116. https://doi.org/10.1134/S0012500819040049

    Article  CAS  Google Scholar 

  28. Panasyuk, G.P., Semenov, E.A., Kozerozhets, I.V., et al., A new method of synthesis of nanosized boehmite (AlOOH) powders with a low impurity content, Dokl. Chem., 2018, vol. 483, p. 272. https://doi.org/10.1134/S0012500818110022

    Article  CAS  Google Scholar 

  29. Chen, Y.G., Huo, W.L., Zhang, X.Y., et al., Ultrahigh-strength alumina ceramic foams via gelation of foamed boehmite sol, J. Am. Ceram. Soc., 2019, vol. 102, no. 9, p. 5503. https://doi.org/10.1111/jace.16378

    Article  CAS  Google Scholar 

  30. Kamari, M., Shafiee, S., Salimi, F., et al., Comparison of modified boehmite nanoplatelets and nanowires for dye removal from aqueous solution, Desalin. Water Treat., 2019, vol. 161, p. 304. https://doi.org/10.5004/dwt.2019.24295

    Article  CAS  Google Scholar 

  31. Rajamani, M. and Rajendrakumar, K., Chitosan-boehmite desiccant composite as a promising adsorbent towards heavy metal removal, J. Environ. Manage., 2019, vol. 244, p. 257. https://doi.org/10.1016/j.jenvman.2019.05.056

    Article  CAS  PubMed  Google Scholar 

  32. Dubey, S.P., Dwivedi, A.D., Sillanpaa, M., et al., Adsorption of As(V) by boehmite and alumina of different morphologies prepared under hydrothermal conditions, Chemosphere, 2017, vol. 169, p. 99. https://doi.org/10.1016/j.chemosphere.2016.11.052

    Article  CAS  PubMed  Google Scholar 

  33. Panasyuk, G.P., Kozerozhets, I.V., Semenov, E.A., et al., A new method for producing a nanosized γ-Al2O3 powder, Russ. J. Inorg. Chem., 2018, vol. 63, no. 10, p. 1303. https://doi.org/10.1134/S0036023618100157

    Article  CAS  Google Scholar 

  34. Panasyuk, G.P., Kozerozhets, I.V., Voroshilov, I.L., et al., The thermodynamic properties and role of water contained in dispersed oxides in precursor-boehmite conversion, based on the example of aluminum hydroxide and oxide under hydrothermal conditions in different environments, Russ. J. Phys. Chem. A, 2015, vol. 89, no. 4, p. 592. https://doi.org/10.1134/S0036024415040196

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed as part of the state assignment of the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Science) in the field of fundamental scientific studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kozerozhets.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozerozhets, I.V., Panasyuk, G.P., Semenov, E.A. et al. Synthesis of Boehmite Nanosized Powder (AlOOH) at Low Temperatures of Hydrothermal Treatment. Theor Found Chem Eng 54, 465–473 (2020). https://doi.org/10.1134/S0040579520030082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520030082

Keywords:

Navigation