Skip to main content
Log in

Effect of Heat Treatment on the Mechanical Strength of Hollow Core Silicon Carbide Fibers

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have determined the tensile mechanical strength of Nicalon CG and Tyranno SAK hollow core silicon carbide fibers after repeated heat treatments at a temperature of 900°C. Analysis of the effect of the number of heat treatment cycles on strength characteristics of the two types of fiber has shown that the statistical strength and Weibull modulus of the Nicalon CG fiber decrease considerably in comparison with those of the Tyranno SAK fiber, which is due to the increase in the number and size of defects on the Nicalon CG fiber as the number of heat treatment cycles increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ceramic Fibers and Coatings: Advanced Materials for the Twenty-First Century, Washington, DC: National Academies, 1998. https://doi.org/10.17226/6042

  2. Matthews, F.L. and Rawlings, R.D., Composite Materials: Engineering and Science, Cambridge: Woodhead, 1999.

    Google Scholar 

  3. Hopkins, G.R., SiC matrix/SiC fiber composite: a high-heat flux, low activation, structural material, J. Nucl. Mater., 1986, vol. 141, pp. 148–151. https://doi.org/10.1016/S0022-3115(86)80025-3

    Article  Google Scholar 

  4. Evans, A.G. and Marshall, D.B., Mechanical behavior of ceramic matrix composites, Fiber Reinforced Ceramic Composites, Mazdiyani, K.S., Ed., San Diego: General Atomics, 1990, pp. 1–39.

    Google Scholar 

  5. Simon, G. and Bunsell, A.R., Creep behavior and structural characterization at high temperatures of Nicalon SiC fibers, J. Mater. Sci., 1984, vol. 19, pp. 3658–3670. https://doi.org/10.1007/BF02396938

    Article  CAS  Google Scholar 

  6. Schreck, Ph., Vix-Guterl, C., Ehrburger, P., and Lahaye, J., Reactivity and molecular structure of silicon carbide fibers derived from polycarbosilanes, J. Mater. Sci., 1992, vol. 27, pp. 4243–4246. https://doi.org/10.1007/BF01105134

    Article  CAS  Google Scholar 

  7. Luthra, K.L., Thermochemical analysis of the stability of continuous “SiC” fibers, J. Am. Ceram. Soc., 1986, vol. 69, pp. 231–233. https://doi.org/10.1111/j.1151-2916.1986.tb07344.x

    Article  Google Scholar 

  8. Bender, B.A., Wallace, J.S., and Schrodt, D.J., Effect of thermochemical treatments on the strength and microstructure of SiC fibres, J. Mater. Sci., 1991, vol. 26, pp. 970–976. https://doi.org/10.1007/BF00576774

    Article  CAS  Google Scholar 

  9. Flores, O., Bordia, R., Nestler, D., Krenkel, W., and Motz, G., Ceramic fibers based on SiC and SiCN systems: current research, development, and commercial status, Adv. Eng. Mater., 2014, vol. 16, no. 6, pp. 1–16. https://doi.org/10.1002/adem.201400069

    Article  CAS  Google Scholar 

  10. Advanced SiC/SiC Ceramic Composites: Developments and Applications in Energy Systems, Kohyama, A. et al., Eds., Westerville: Am. Ceram. Soc., 2002. https://doi.org/10.1002/9781118406014

  11. Ishikawa, T. and Oda, H., Heat-resistant inorganic fibers, Advances in High Temperature Ceramic Matrix Composites and Materials for Sustainable Development, Westerville: Am. Ceram. Soc., 2017, pp. 7–18. https://doi.org/10.1002/9781119407270.ch2

  12. Utkin, A.V., Matvienko, A.A., Titov, A.T., and Baklanova, N.I., Multiple zirconia interphase for SiC/SiCf composites, Surf. Coat. Technol., 2011, vol. 205, nos. 8–9, pp. 2724–2729. https://doi.org/10.1016/j.surfcoat.2010.10.025

    Article  CAS  Google Scholar 

  13. Tsirlin, A.M., Nepreryvnye neorganicheskie volokna dlya kompozitsionnykh materialov (Continuous Inorganic Fibers for Composite Materials), Moscow: Metallurgiya, 1992.

  14. Lissart, N. and Lamon, J., Statistical analysis of failure of SiC fibers in the presence of bimodal flaw populations, J. Mater. Sci., 1997, vol. 32, pp. 6107–6117. https://doi.org/10.1023/A:1018600119250

    Article  CAS  Google Scholar 

  15. Nyahumwa, C., Multiple defect distributions on Weibull statistical analysis of fatigue life of cast aluminium alloys, African J. Sci. Technol., 2010, vol. 6, no. 2, pp. 43–54. https://doi.org/10.4314/ajst.v6i2.55174

    Article  Google Scholar 

  16. Thomason, J.L., On the application of Weibull analysis to experimentally determined single fibre strength distribution, Comp. Sci. Technol., 2013, vol. 77, pp. 74–80. https://doi.org/10.1016/j.compscitech.2013.01.009

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 18-29-17013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Prokip.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokip, V.E., Lozanov, V.V., Bannykh, D.A. et al. Effect of Heat Treatment on the Mechanical Strength of Hollow Core Silicon Carbide Fibers. Inorg Mater 56, 241–248 (2020). https://doi.org/10.1134/S0020168520030152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520030152

Keywords:

Navigation