Skip to main content
Log in

Preparation, structure, and properties of carbon-coated Li1.2Ni0.2Mn0.4Co0.2O2 nanoparticles

  • Published:
Inorganic Materials Aims and scope

Abstract

Many scientists have focused on the problem of improving the electrochemical performance (specific capacity, electrical conductivity, stability, and other characteristics) of cathode materials for lithium ion batteries. Nanostructuring and the use of cathode nanomaterials offer an effective solution to this problem. Here, we describe a new method of producing cathode materials for lithium ion batteries using nanoparticles with the composition Li1.2Ni0.2Mn0.4Co0.2O2/C, in which the mixed oxides have the form of core/shell nanoparticles (<100 nm in size) and a carbon layer serves as a shell, which increases the conductivity of the electrode material and improves its stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, F., Zhang, Y., and Zou, J., The structural mechanism of the improved electrochemical performances resulted from sintering atmosphere for LiNi0.5Co0.2Mn0.3O2 cathode material, J. Alloys Compd., 2013, vol. 558, p. 172.

    Article  CAS  Google Scholar 

  2. Idemoto, Y. and Matsui, T., Thermodynamic stability, crystal structure, and cathodic performance of Li1 − x (Mn1/3Co1/3Ni1/3)O2 depend on the synthetic process and Li content, Solid State Ionics, 2008, vol. 179, p. 625.

    Article  CAS  Google Scholar 

  3. Yang, S.Y., Wang, X.Y., and Yang, X.K., Influence of Li source on tap density and high rate cycling performance of spherical Li[Ni1/3Co1/3Mn1/3]O2 for advanced lithium-ion batteries, J. Solid State Electrochem., 2012, vol. 16, p. 1229.

    Article  CAS  Google Scholar 

  4. Park, S.-H., Kang, S.-H., and Belharouak, I., Physical and electrochemical properties of spherical Li1 + x (Ni1/3Co1/3Mn1/3)1 − x O2 cathode materials, J. Power Sources, 2008, vol. 177, p. 177.

    Article  CAS  Google Scholar 

  5. Koga, H., Croguennec, L., and Mannessiez, Ph., Li1.20Mn0.54Co0.13Ni0.13O2 with different particle sizes as attractive positive electrode materials for lithium-ion batteries: insights into their structure, J. Phys. Chem. C, 2012, vol. 116, p. 13 497.

    Article  CAS  Google Scholar 

  6. Ohzuku, T. and Makimura, Y., Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries, Chem. Lett., 2001, vol. 8, p. 744.

    Article  Google Scholar 

  7. Shen, B.J., Ma, J.S., and Wu, H.C., Microwave-mediated hydrothermal synthesis and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 powders, Mater. Lett., 2008, vol. 62, p. 4075.

    Article  CAS  Google Scholar 

  8. Cheng, F., Xin, Y., and Chen, J., Enhanced electrochemical performances of 5 V spinel LiMn1.58Ni0.42O4 cathode materials by coating with LiAlO2, J. Power Sources, 2013, vol. 239, p. 181.

    Article  CAS  Google Scholar 

  9. Shlyakhtin, O.A., Yoonc, Y.S., and Choi, S.H., Characterization of nanocrystalline HT-LiCoO2 cathode materials for secondary lithium batteries, Electrochim. Acta, 2004, vol. 50, p. 505.

    Article  CAS  Google Scholar 

  10. Gubin, S.P., Yurkov, G.Yu., and Kosobudsky, I.D., Nanomaterials based on metal-containing nanoparticles in polyethylene and other carbon-chain polymers, Int. J. Mater. Prod. Technol., 2005, vol. 23, p. 2.

    CAS  Google Scholar 

  11. Tkachev, S.V., Buslaeva, E.Yu., Naumkin, A.V., et al., Reduced graphene oxide, Inorg. Mater., 2012, vol. 48, no. 8, p. 796.

    Article  CAS  Google Scholar 

  12. Ohzuku, T. and Makimura, Y., Lithium insertion material of LiNi1/2Mn1/2O2 for advanced lithium-ion batteries, J. Power Sources, 2003, p. 156.

    Google Scholar 

  13. Johnson, C.S., Vaughey, J.T., and Thackeray, M.M., Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3 · (1 − x) LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7), Chem. Mater., 2008, vol. 20, p. 6095.

    Article  CAS  Google Scholar 

  14. Thackeray, M.M., Kang, S.H., and Johnson, C.S., Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) elec- trodes for lithium-ion batteries, J. Mater. Chem., 2007, vol. 17, p. 3053.

    Article  Google Scholar 

  15. Gubin, S.P. and Tkachev, S.V., Grafen i rodstvennye nanoformy ugleroda (Graphene and Related Nano- forms of Carbon), Moscow: URSS, 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Voronov.

Additional information

Original Russian Text © V.A. Voronov, S.P. Gubin, 2014, published in Neorganicheskie Materialy, 2014, Vol. 50, No. 4, pp. 442–447.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voronov, V.A., Gubin, S.P. Preparation, structure, and properties of carbon-coated Li1.2Ni0.2Mn0.4Co0.2O2 nanoparticles. Inorg Mater 50, 409–414 (2014). https://doi.org/10.1134/S0020168514040189

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168514040189

Keywords

Navigation