Skip to main content
Log in

Microalgae biofuel potentials (Review)

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

With the decrease of fossil based fuels and the environmental impact of them over the planet, it seems necessary to seek the sustainable sources of clean energy. Biofuels, is becoming a worldwide leader in the development of renewable energy resources. It is worthwhile to say that algal biofuel production is thought to help stabilize the concentration of carbon dioxide in the atmosphere and decrease global warming impacts. Also, among algal fuels’ attractive characteristics, algal biodiesel is non toxic, with no sulfur, highly biodegradable and relatively harmless to the environment if spilled. Algae are capable of producing in excess of 30 times more oil per acre than corn and soybean crops. Currently, algal biofuel production has not been commercialized due to high costs associated with production, harvesting and oil extraction but the technology is progressing. Extensive research was conducted to determine the utilization of microalgae as an energy source and make algae oil production commercially viable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirsch, R.L., Bezdek, R., and Wendling, R., Peaking of World Oil Production, Impacts, Mitigation and Risk Management, National Energy Technology Laboratory, 2005.

  2. Nicols, T., How the Energy Industry Works. An Insiders Guide, Silverstone Communications Ltd, 2009.

  3. Ryan, C., Cultivation Clean Energy: The Promise of Algae Biofuels, Hartley, A., Ed., Terrapin, Bright Green, 2009, pp. 9–62.

  4. Feinberg, D.A., Fuel Options from Microalgae with Representative Chemical Composition, Solar Energy Research Institute, SERI/TR-231-2427, FTP No. 386; 1984, pp. 12–31.

  5. Chisti, Y., Biotechnol. Adv., 2007, vol. 25, no. 3, pp. 294–306.

    Article  PubMed  CAS  Google Scholar 

  6. Rittmann, B.E., Biotech Bioeng., 2008, vol. 100, no. 2, pp. 203–213. doi:10.1002/bit.21875.

    Article  CAS  Google Scholar 

  7. International Energy Outlook, Energy Information Administration, Official Energy Statistics from the U.S. Government, 2008 WDC. www.eia.doe.gov/oiaf/ieo/index.html.

  8. Demirbas, M., Energy Edu. Sci Technol., 2000, vol. 5, pp. 21–45.

    CAS  Google Scholar 

  9. Thurmond, W., Algae 2020: Biofuels Markets, Business Models, Strategies, Players and Commercialization Outlook from 2012-2020, Emerging Market Online Releases, 2009. www.emerging-markets.com/.../Algae2020Next Generation Biofuels Study Emerging Markets Online.

  10. Deng, X., Li, Y., and Fei, X., Afr. J. Microbiol. Res., 2009, vol. 3, no. 13, pp. 1008–1014.

    CAS  Google Scholar 

  11. Ng, J.H., Ng, H.K. and Gan, S., Recent Trends in Policies, Socioeconomy and Future Directions of the Biodiesel Industry, Clean Techn. Environ. Policy 2009. doi 10.1007/s10098-009-0235-2.

  12. Bungay, H.R., Trends Biotechnol., 2004, vol. 22, pp. 67–71.

    Article  PubMed  CAS  Google Scholar 

  13. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., and Darzins, A., Plant J., 2008, vol. 54, pp. 621–639.

    Article  PubMed  CAS  Google Scholar 

  14. Drapcho, C.M., Phu Nhuan, N., and Walker, T.H., Biofuels Engineering Process Technology, The McGraw-Hill Companies, 2008, pp. 69–344.

  15. Morowvat, M. H., Rasoul-Amini, S., and Ghasemi, Y., Bioresource Technol., 2010, vol. 101, pp. 2059–2062.

    Article  CAS  Google Scholar 

  16. Rasoul-Amini, S., Montazeri-Najafabady, N., Mobasher, M. A., Hoseini-Alhashemi, S., and Ghasemi, Y., Appl. Energy, 2011, vol. 88, no. 10, pp. 3307–3312.

    Article  Google Scholar 

  17. Vasudevan, P.T., J. Int. Microbiol. Biotechnol., 2008, vol. 35, pp. 421–430.

    Article  CAS  Google Scholar 

  18. Becker, E.W., Baddiley, J., Higgins, I.J. and Potter, W.G., Microalgae: Biotechnology and Microbiology, Cambridge: Cambridge Univ. Press, 1994.

    Google Scholar 

  19. Verma, N.M., Mehrotra, S., Shukla, A. and Nath Mishra, B., Afr. J. Biotechnol., 2010, vol. 9, no. 10, pp. 1402–1411.

    CAS  Google Scholar 

  20. Abou-Shanab, R.A.I., Jeon, B., Song, H., Kim, Y. and Hwan, J.H., Algae-Biofuel: Potential Use as Sustainable Alternative Green Energy, The Online Journal on Power and Energy Engineering (OJPEE), Reference Number W09-00021(1), 2009, pp. 4–7.

  21. Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G. and Tredici, M.R., Biotechnol. Bioeng., 2009, vol. 102, no. 1, pp.100–112.

    Article  PubMed  CAS  Google Scholar 

  22. Chojnacka, K. and Noworyta, A., Enzyme Microb. Technol., 2004, vol. 34, pp. 461–465.

    Article  CAS  Google Scholar 

  23. Mata, T.M., Martins, A.A., and Caetano, N.S., Renew Sustain. Energy Rev., 2009, vol. 43, no. 14, pp. 217–232.

    Google Scholar 

  24. Wang, B., Li, Y., Wu, N., and Lan, C.Q., Appl. Microbiol. Biotechnol., 2008, vol. 79, pp. 707–718.

    Article  PubMed  CAS  Google Scholar 

  25. Chaumont, D., J. Appl. Phycol., 1993, vol. 5, pp. 593–604.

    Article  Google Scholar 

  26. Grobbelaar, J.U., S. Afr. J. Bot., 2007, vol. 73, no. 2, pp. 289–290.

    Article  Google Scholar 

  27. Sheehan, J.T., Dunahay, J., Benemann, J.R., and Roessler, P.G., Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae: Close-Out Report, 1998, pp. 34–302. http://govdocs.aquake.org/cgi/reprint/2004/915/9150010.pdf

  28. Borowitzka, M., J. Biotechnol., 1999, vol. 70, pp. 313–321.

    Article  CAS  Google Scholar 

  29. van Beilen, J.B., Biofuels, Bioprod. Bioref., 2010, vol. 4, pp. 41–52.

    Article  Google Scholar 

  30. Alabi, A.O., Tampier, M., and Bibeau, E., Microalgae Technologies and Processes for Biofuels/Bioenergy Production in British Columbia: Current Technology, Suitability and Barriers to Implementation, The British Columbia Innovation Council, Seed Science, 2009.

  31. Richmond A., Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Blackwell Science, 2004.

  32. Lee, Y.K., J. Appl. Phycol., 2001, vol. 13, pp. 307–315.

    Article  Google Scholar 

  33. Amin, S., Energy Conversion Manage., 2009, vol. 50, pp. 1834–1840.

    Article  CAS  Google Scholar 

  34. Wijffels, R.H., Trends Biotechnol., 2008, vol. 26, pp. 26–31.

    Article  PubMed  CAS  Google Scholar 

  35. Travieso, L., Hall, D.O., Rao, K.K., Benitez, F., Sanchez, E., and Borja, R., Int. Biodeterior. Biodegrad., 2001, vol. 47, pp. 151–155.

    Article  CAS  Google Scholar 

  36. Camacho Rubio, F., Camacho, F.G., Sevilla, J.M.F., Chisti, Y., and Molina Grima, E., Biotechnol. Bioeng., 2003, vol. 81, pp. 473–559.

    Google Scholar 

  37. Ugwu, C.U., Ogbonna, J.C., and Tanaka, H., Proc. Biochem., 2005, vol. 40, pp. 340–341.

    Article  Google Scholar 

  38. Eriksen, N.T., Biotechnol. Lett., 2008, vol. 30, pp. 1525–1536.

    Article  PubMed  CAS  Google Scholar 

  39. Vunjak-Novakovic, G., Kim, Y., Wu, X., Berzin, I., and Merchuk, J.C., Ind. Eng. Chem. Res., 2005, vol. 44, pp. 6154–6163.

    Article  CAS  Google Scholar 

  40. Chini Zittelli, G., Rodolfi, L., Biondi, N., and Tredici, M.R., Aquaculture, 2006, vol. 261, pp. 932–943.

    Article  Google Scholar 

  41. Xu, L., Weathers, P.J., Xiong, X.R., and Liu, C.Z., Eng. Life Sci., 2009, vol. 9, no. 3, pp. 178–189.

    Article  CAS  Google Scholar 

  42. Miron, A.S., Gomez, A.C., Camacho, F.G., Monila Grima, E., and Chisti, Y., J. Biotechnol., 1999, vol. 70, pp. 249–270.

    Article  Google Scholar 

  43. Hu, Q., Guterman, H., and Richmond, A., Biotechnol. Bioeng., 1996, vol. 51, pp. 51–60.

    Article  PubMed  CAS  Google Scholar 

  44. Hu, Q., Kurano, N., Kawachi, M., Iwasaki, I., and Miyachi, S., Appl. Microbiol. Biotechnol., 1998, vol. 49, pp. 655–662.

    Article  CAS  Google Scholar 

  45. Zijffers, J.W.F., Janssen, M., Tramper, J., and Wijffels, R.H., Mar. Biotechnol., 2008, vol. 10, pp. 404–415.

    Article  PubMed  CAS  Google Scholar 

  46. Mallick, N., Biometals, 2002, vol. 15, pp. 377–390.

    Article  PubMed  CAS  Google Scholar 

  47. Bailliez, C., Largeau, C., and Casadevall, E., Appl. Microbiol. Biotechnol., 1985, vol. 23, pp. 99–105.

    CAS  Google Scholar 

  48. Thakur, A. and Kumar, H.D., Acta Biotechnol., 2004, vol. 19, pp. 37–44.

    Article  Google Scholar 

  49. Gonzalez, L.E. and Bashan, Y., Appl. Environ. Microbiol., 2000, vol. 66, pp. 1527–1531.

    Article  PubMed  CAS  Google Scholar 

  50. Abdel Hameed, M.S. and Hammouda Ebrahim, O.L.A., Int. J. Agric. Biol., 2007, vol. 9, no. 1, pp. 184–191.

    Google Scholar 

  51. Huntley, M. and Redalje, D., CO 2 Mitigation and Renewable Oil from Photosynthetic Microbes: A New Appraisal Report, University of Hawaii, University of Mississippi, Mitigation and Adaptation Strategies for Global Change, 2006.

  52. Williams, J.A., Keys to Bioreactor Selection, CEP Magazine, 2002, pp. 34–41.

  53. Schenk, P.M., Bioenergy Res. J., 2008, vol. 1, pp. 20–43.

    Article  Google Scholar 

  54. Food and Agriculture Organization of the United Nations (FAO). Algae-Based Biofuel: A Review of Challenges and Opportunities for Developing Countries, Rome, Italy, 2009. www.fao.org/bioenergy/aquaticbiofuels.

  55. Molina Grima, E., Belarbi, E.H., Fernandez, F.G.A., Medina, A.R., and Chisti, Y., Biotechnol. Adv., 2003, vol. 20, no. 7–8, pp. 491–515.

    Article  PubMed  CAS  Google Scholar 

  56. Benemann, J.R. and Oswald, W.J., Systems and Economic Analysis of Microalgae Ponds for Conversion of CO2 to Biomass. The Smithsonian/NASA Astrophysics Data System, Grant No. DE-FG22-93PC93204, 1996, pp. 21–191.

  57. Tilton, R.C., Murphy, J., and Dixon, J.K., Water Res., 1972, vol. 6, pp. 155–164.

    Article  CAS  Google Scholar 

  58. Poelman, E., De Pauw, N., and Jeurissen, B., Resour Conserv. Recycl., 1997, vol. 19, no. 1, pp. 1–10.

    Article  Google Scholar 

  59. Alfafara, C.G., Nakano, K., Nomura, N., Igarashi, T., and Matsumura, M., J. Chem. Technol. Biotechnol., 2002, vol. 77, no. 8, pp. 871–876.

    Article  CAS  Google Scholar 

  60. Fischer, C.R., Klein-Marcuschamer, D., and Stephanopoulos, G., Metab. Eng., 2008, vol. 10, pp. 295–304.

    Article  PubMed  CAS  Google Scholar 

  61. Hillen, L.W., Pollard, G., Wake, L.V., and White, N., Biotechnol. Bioeng., 1982, vol. 24, no. 1, pp. 193–205.

    Article  PubMed  CAS  Google Scholar 

  62. Ranga Rao, A. and Ravishankar, G.A., J. Microbiol. Biotechnol., 2007, vol. 17, no. 3, pp. 414–419.

    PubMed  CAS  Google Scholar 

  63. Mousdale, D.M., Biofuels: Biotechnology, Chemistry, and Sustainable Development, Taylor Francis Group, CRC press, 2008.

  64. Neenan, B., Feinberg, D., Hill, A., Mclntosh, R., and Terry, K., Fuels from Microalgae: Technology Status, Potential, and Research Requirements, Colorado: Solar Energy Research Institute, 1986, SERIISP-231-2550 DE86OlO739UC Category.

    Book  Google Scholar 

  65. Huber, G.W., Iborra, S., and Corma, A., Chem Rev., 2006, vol. 106, no. 9, pp. 4044–4098.

    Article  PubMed  CAS  Google Scholar 

  66. Sims, B., Biodiesel: A Global Perspective, Biodiesel Magazine, 2007. http://www.biodieselmagazine.com/article.jsp?article-id=1961.

  67. Hamelinck, C.N., Van Hooijdonk, G., and Faaij, A.P.C., Biomass Bioenerg., 2005, vol. 28, no. 4, pp. 384–410.

    Article  CAS  Google Scholar 

  68. Cheryl, B., Algae Becoming the New Biofuel of Choice, Duelign Fuels, 2008. http://duelingfuels.com/biofuels/non-food-biofuels/algae-biofuel.php.

  69. Kapdan, I.K. and Kargi, F., Enzyme Microb. Technol., 2006, vol. 38, pp. 569–582.

    Article  CAS  Google Scholar 

  70. Das, D. and Veziroglu, T.N., Int. J. Hydrogen Energy, 2001, vol. 26, pp. 13–28.

    Article  CAS  Google Scholar 

  71. Ghirardi, M.L., Zhang, J.P., and Lee, J.W., Trends Biotechnol., 2000, vol. 18, pp. 506–511.

    Article  PubMed  CAS  Google Scholar 

  72. Fedorov, A.S., Tsygankov, A.A., Rao, K.K., and Hall, D.O., Biotechnol. Lett., 1998, vol. 20, p. 1007.

  73. Weissman, J.C. and Benemann, J.R., Appl. Environ. Microbiol., 1977, vol. 33, pp. 123–126.

    PubMed  CAS  Google Scholar 

  74. Guan, Y.F., Deng, M.C., Yu, X.J., and Zhang, W., Biochem. Eng. J., 2004, vol. 19, pp. 69–73.

    Article  CAS  Google Scholar 

  75. Melis, A. and Happe, T., Plant Physiol., 2001, vol. 127, pp. 740–748.

    Article  PubMed  CAS  Google Scholar 

  76. Miura, Y., Proc. Biochem., 1995, vol. 30, pp. 1–7.

    CAS  Google Scholar 

  77. Banerjee, M., Kumar, A., and Kumar, H.D., Int. J. Hydrogen Energy, 1989, vol. 12, pp. 871–879.

    Article  Google Scholar 

  78. Pinto, F.A.L., Troshina, O., and Lindblad, P., Int. J. Hydrogen Energy, 2002, vol. 27, p. 1209.

    Article  Google Scholar 

  79. Brennan, L. and Owende, P., Renew. Sustain. Energy Rev., 2010, vol. 14, pp. 557–577.

    Article  CAS  Google Scholar 

  80. Bilitewski, B., Härdtle, G., and Marek, C., Waste Management, Berlin: Springer, 1997.

    Google Scholar 

  81. Yena, H.W., Bioresource Technol., 2007, vol. 98, no. 1, pp. 130–134.

    Article  Google Scholar 

  82. Mozaffarian, M., Zwart, R.W.R., Boerrigter, H., Deurwaarder, E.P., and Kersten, S.R.A., Green Gas as Synthetic Natural Gas. A Renewable Fuel with Conventional Quality, in “Science in Thermal and Chemical Biomass Conversion,” Conf., Victoria, Canada, 2004.

  83. Semelsberger, T.A., Borup, R.L., and Greene, H.L., J. Power Sources, 2006, vol. 156, no. 2, pp. 497–511.

    Article  CAS  Google Scholar 

  84. Demirbas, M., World Biofuel Scenario, Handbook of Plant Based Biofuels, Boca Raton: CRC Press, Taylor Francis Group, 2009, pp. 13–27.

    Google Scholar 

  85. Peña, N., Biofuels for Transportation: A Climate Perspective, Pew Center on Global Climate Change, 2008.

  86. Ge, Q., Huang, Y., Qiu, F., and Li, S., Appl. Catal. A, 1998, vol. 167, no. 1, pp. 23–30.

    Article  CAS  Google Scholar 

  87. Fukuda, H., Kondo, A., and Noda, H., J. Biosci. Bioeng., 2001, vol. 9, pp. 405–16.

    Google Scholar 

  88. Su, E.Z., Zhang, M.J., Zhang, J.G., Gao, J.F., and Wei D.Z., Biochem. Eng. J., 2007, vol. 36, pp. 167–173.

    Article  CAS  Google Scholar 

  89. Xu, Y., Du, W., and Liu, D., J. Mol. Catal. B: Enzym., 2005, vol. 32, pp. 241–245.

    Article  CAS  Google Scholar 

  90. Kumar Modi, M., Reddy, J.R.C., Rao, B.V.S.K., and Prasad, R.B.N., Bioresource Technol., 2007, vol. 98, pp. 1260–1264.

    Article  Google Scholar 

  91. Li, L., Liu, D., Wang, L., and Li, Z., J. Mol. Catal. B: Enzym., 2006, vol. 43, pp. 58–62.

    Article  CAS  Google Scholar 

  92. Nielsen, P.M., in Enzymatic Biodiesel Workshop at the 6th Euro Fed Lipid Congress in Athens, 2009, pp. 59–60.

  93. Nagle, N. and Lemke, P., Appl. Biochem. Biotechnol., 1990, vol. 24/25, pp. 355–361.

    Article  Google Scholar 

  94. Miao, X. and Wu, Q., Bioresource Technol., 2006, vol. 97, pp. 841–846.

    Article  CAS  Google Scholar 

  95. Ehimen, E.A., Sun, Z.F., and Carrington, C.G., Fuel., 2010, vol. 89, pp. 677–684.

    Article  CAS  Google Scholar 

  96. Sialve, B., Bernet, N., and Bernard, O., Biotechnol. Adv., 2009, vol. 27, no. 4, pp. 409–416.

    Article  PubMed  CAS  Google Scholar 

  97. Lepage, G. and C. C. Roy, J. Lipid Res., 1984, vol. 25, pp 1391-1396.

  98. Rodriguez-Ruiz, J., Belarbi, E.H., Sanchez, J.L.G., and Alonso, D.L., Biotechnol. Tech., 1998, vol. 12, pp. 689–691.

    Article  CAS  Google Scholar 

  99. Carvalho A.P. and Malcata F.X., J. Agric. Food Chem., 2005, vol. 53, no. 13. pp. 5049–5059.

    Article  PubMed  CAS  Google Scholar 

  100. Rösch, C., Skarka, J., and Patyk, A., Microalgae Opportunities and Challenges of an Innovative Energy Source, in 17th European Biomass Conference and Exhibition, 29 June–3 July 2009, Hamburg, Germany.

  101. Feng, W., van der Kooi, H.J., and de Swaan Arons, J., Chem. Eng. J., 2004, vol. 98, pp. 105–113.

    Article  CAS  Google Scholar 

  102. Hallgren, A., Andersson, L., and Bjerle, I., Adv. Thermochem. Biomass Convers., Ed. Rev. Pap. Int. Conf., 3rd, 1994, pp. 338–349.

  103. Yang, Y., Xiang, H., Zhang, R., Zhong, B., and Li, Y., Catal. Today, 2005, vol. 106, no. 1–4, pp. 170–175.

    Article  CAS  Google Scholar 

  104. McKendry, P., Bioresource Technol., 2002, vol. 83, pp. 47–54.

    Article  CAS  Google Scholar 

  105. Chiaramonti, D., Oasmaa, A., and Solantausta, Y., Renew Sustain. Energy Rev., 2007, vol. 11, pp. 1056–1086.

    Article  CAS  Google Scholar 

  106. Miao, X. and Wu, Q., J. Biotechnol., 2004, vol. 110, pp. 85–93.

    Article  PubMed  CAS  Google Scholar 

  107. Miao, X., Wu, Q. and Yang, C., J. Anal. Appl. Pyrol., 2004, vol. 71, pp. 855–863.

    Article  CAS  Google Scholar 

  108. Peng, W., Wu, Q., Tu, P. and Zhao, N., Bioresource Technol., 2001, vol. 80, pp. 1–7.

    Article  CAS  Google Scholar 

  109. Spolaore, P., Joannis-Cassan, C., Duran, E., and Isambert, A., J. Biosci. Bioeng., 2006, vol. 101, pp. 87–96.

    Article  PubMed  CAS  Google Scholar 

  110. Bridgwater, A.V., App. Catal. A Gen., 1994, vol. 116, nos. 1-2, pp. 5–47.

    Article  CAS  Google Scholar 

  111. Ozbay, N., Putun, A.E., Uzun, B.B., and Putun, E., Renew. Energy, 2001, vol. 24, pp. 615–625.

    Article  CAS  Google Scholar 

  112. Maher, K.D. and Bressler, D.C., Bioresource Technol., 2007, vol. 98, no. 12, pp. 2351–2368.

    Article  CAS  Google Scholar 

  113. Knothe, G., Fuel Process Technol., 2005, vol. 86, no. 10, pp. 1059–1070.

    Article  CAS  Google Scholar 

  114. Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., and Xian, M., Renew. Energy, 2009, vol. 34, pp. 1–5.

    Article  Google Scholar 

  115. Bamgboye, A.I. and Hansen, A.C., Int. Agrophys., 2008, vol. 22, pp. 21–29.

    CAS  Google Scholar 

  116. Brown, P., Algal Biofuels Research, Development, and Commercialization Priorities: A Commercial Economics Perspective 2009. www.diversifiedenergy.com.

  117. Hankfamer, B., Physiol. Plant., 2007, vol. 131, pp. 10–21.

    Article  Google Scholar 

  118. Chisti, Y., Environ. Eng. Manag. J., 2006, vol. 5, pp. 261–274.

    CAS  Google Scholar 

  119. Kanes, S., The Choice of Next-Generation Biofuels (Algae Excerpt), Equity Research Industry Report, Scotia Capital, 2009.

  120. Li, Y., Horsman, M., Wu, N., and Lan, C.Q., Biotechnol. Prog., 2008, vol. 24, pp. 815–820.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ghasemi.

Additional information

Published in Russian in Prikladnaya Biokhimiya i Mikrobiologiya, 2012, Vol. 48, No. 2, pp. 150–168.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghasemi, Y., Rasoul-Amini, S., Naseri, A.T. et al. Microalgae biofuel potentials (Review). Appl Biochem Microbiol 48, 126–144 (2012). https://doi.org/10.1134/S0003683812020068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683812020068

Keywords

Navigation