Skip to main content
Log in

Magnetoresistance of La0.67Sr0.33MnO3 epitaxial films grown on a substrate with low lattice mismatch

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The structure, electrical resistivity, and magnetoresistance of La0.67Sr0.33MnO3 heteroepitaxial films (120-nm thick) practically unstrained by lattice mismatch with the substrate were studied. A strong maximum of negative magnetoresistance of ≈27% (for μ0 H = 4 T) was observed at T ≈360 K. While the magnetoresistance decreased monotonically in magnitude with decreasing temperature, it was still in excess of 2% at 150 K. For T < 250 K, the temperature dependence of the electrical resistivity ρ of La0.67Sr0.33MnO3 films is fitted well by the relation ρ = ρ0 + ρ 1(H)T 2.3, where ρ0 = 1.1×10−4 Ω cm, ρ1(H = 0) = 1.8×10−9 Ω cm/K2.3, and ρ10 H = 4 T)/ρ1(H = 0) ≈0.96. The temperature dependence of a parameter γ characterizing the extent to which the electrical resistivity of the ferromagnetic phase of La0.67Sr0.33MnO3 films is suppressed by a magnetic field (μ 0 H = 5 T) was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Pannetier, C. Fermon, G. de Goff, J. Simola, and E. Kerr, Science (Washington) 304(5677), 1648 (2004).

    Article  ADS  Google Scholar 

  2. S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’Sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouiloud, R. A. Wanner, and W. G. Gallagher, J. Appl. Phys. 85(8), 5828 (1999).

    Article  ADS  Google Scholar 

  3. Z. W. Dong, R. Ramesh, T. Venkatesan, M. Johnson, Z. Y. Chen, S. P. Pai, V. Talyansky, R. P. Sharma, R. Shreekala, C. J. Lobb, and R. L. Greene, Appl. Phys. Lett. 71(12), 1718 (1997).

    Article  ADS  Google Scholar 

  4. M. Bowen, M. Bibes, A. Barthelemy, J.-P. Contour, A. Anane, Y. Lemaitre, and A. Fert, Appl. Phys. Lett. 82(2), 233 (2003).

    Article  ADS  Google Scholar 

  5. V. Garcia, M. Bides, A. Barthelemy, M. Bowen, E. Jacquet, J.-P. Contour, and A. Fert, Phys. Rev. B: Condens. Matter 69(5), 052 403 (2004).

    Google Scholar 

  6. Yu. A. Boikov, R. Gunnarsson, and T. Claeson, J. Appl. Phys. 96(1), 435 (2004).

    Article  ADS  Google Scholar 

  7. Yu. A. Boikov and T. Claeson, Fiz. Tverd. Tela (St. Petersburg) 47(2), 274 (2005) [Phys. Solid State 47 (2), 287 (2005)].

    Google Scholar 

  8. T. I. Kamins, J. Appl. Phys. 42(9), 4357 (1971).

    Google Scholar 

  9. Yu. A. Boikov and T. Claeson, Physica B (Amsterdam) 311(3–4), 250 (2002).

    ADS  Google Scholar 

  10. M. C. Martin, G. Shirane, Y. Endoh, K. Hirota, Y. Moritomo, and Y. Tokura, Phys. Rev. B: Condens. Matter 53(21), 14 285 (1996).

    Google Scholar 

  11. Yu. A. Boikov, T. Claeson, and A. Yu. Boikov, Zh. Tekh. Fiz. 71(10), 54 (2001) [Tech. Phys. 46, 1260 (2001)].

    Google Scholar 

  12. G. J. Snyder, R. Hiskes, S. DiCarolis, M. R. Beasly, and T. H. Geballe, Phys. Rev. B: Condens. Matter 53(21), 14434 (1996).

    Google Scholar 

  13. K. Kubo and N. Ohata, J. Phys. Soc. Jpn. 33(1), 21 (1972).

    Google Scholar 

  14. D. A. Goodings, Phys. Rev. 132(2), 542 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  15. B. Raquet, M. Virtet, J. M. Broto, E. Sondergard, O. Cespedes, and R. Mamy, J. Appl. Phys. 91(10), 8129 (2002).

    Article  ADS  Google Scholar 

  16. P. Schiffer, A. P. Ramirez, W. Bao, and S.-W. Cheong, Phys. Rev. Lett. 75(18), 3336 (1995).

    Article  ADS  Google Scholar 

  17. J. M. de Teresa, M. R. Ibarra, J. Blasco, J. Garcia, C. Marquina, P. A. Algarabel, Z. Arnold, K. Kamenev, C. Ritter, and R. von Helmolt, Phys. Rev. B: Condens. Matter 54(2), 1187 (1996).

    ADS  Google Scholar 

  18. B. Raquet, M. Viret, E. Sondergard, O. Cespedes, and R. Mamy, Phys. Rev. B: Condens. Matter 66(2), 024 433 (2002).

    Google Scholar 

  19. Y. Tokura, in Colossal Magnetoresistive Oxides, Ed. by Y. Tokura (Gordon and Breach, Amsterdam, 2000), p. 22.

    Google Scholar 

  20. H. Y. Hwang, S.-W. Cheong, N. P. Ong, and B. Batlogg, Phys. Rev. Lett. 77(10), 2041 (1996).

    Article  ADS  Google Scholar 

  21. E. Dan Dahlberg, K. Riggs, and G. A. Prinz, J. Appl. Phys. 63(8), 4270 (1988).

    ADS  Google Scholar 

  22. Y.-A. Soh, G. Aeppli, C.-Y. Kim, N. D. Mathur, and M. G. Blamire, J. Appl. Phys. 93(10), 8322 (2003).

    Article  ADS  Google Scholar 

  23. K. Steenbeck and R. Hiergeist, Appl. Phys. Lett. 75(12), 1778 (1999).

    Article  ADS  Google Scholar 

  24. H. S. Wang, E. Wertz, Y. F. Hu, and Q. Li, J. Appl. Phys. 87(9), 6749 (2000).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 47, No. 12, 2005, pp. 2189–2194.

Original Russian Text Copyright © 2005 by Bo\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \)kov, Claeson, Danilov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boikov, Y.A., Claeson, T. & Danilov, V.A. Magnetoresistance of La0.67Sr0.33MnO3 epitaxial films grown on a substrate with low lattice mismatch. Phys. Solid State 47, 2281–2286 (2005). https://doi.org/10.1134/1.2142891

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2142891

Keywords

Navigation