Skip to main content
Log in

Anisotropic resistivity and electroresistance in epitaxial La0.3Pr0.4Ca0.3MnO3 thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effects of anisotropic strain (AS) are considered in La0.3Pr0.4Ca0.3MnO3 films produced by pulsed laser deposition on [001]-oriented NdGaO3 substrates via magnetic and resistivity measurements along with the two orthogonal in-plane directions. The anisotropic resistance is manifested with various degrees due to the different strengths of anisotropic strain that can be controlled with film thicknesses. The temperature-dependent resistivity was measured along with the two orthogonal directions. The anisotropic resistivity (AR) originated from different percolation paths in films and reached an extraordinary value of ~ 107% for the film, with a thickness of 50 nm. On the other hand, the enhanced AR reveals that the AS induces electronic phase separation with ferromagnetic metallic entities’ appearance with preferred orientation along (100) direction in an antiferromagnetic insulating background. Besides, we examined the effects of electric current on the resistivity of films. It is found that the application of larger currents results in a dramatic reduction of film resistance, and the extraordinary value of the electroresistance (~ 97%) was obtained by increasing the current from 0.01 to 10 µA. We attribute this behavior to the percolative channels with a width comparable to the mesoscopic phase-separated domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V. Agarwal, G. Sharma, P. Siwach, K. Maurya, H. Singh, Magnetism and electrical transport properties of La 1–x− y Pr y Ca x MnO 3 (x≈ 0.42, y≈ 0.40) thin films: role of microstructural disorder. Appl. Phys. A 119(3), 899–908 (2015)

    Article  ADS  Google Scholar 

  2. H. Takagi, H.Y. Hwang, An emergent change of phase for electronics. Science 327(5973), 1601–1602 (2010)

    Article  ADS  Google Scholar 

  3. H.-Y. Zhai et al., Giant discrete steps in metal-insulator transition in perovskite manganite wires. Phys. Rev. Lett. 97(16), 167201 (2006)

    Article  ADS  Google Scholar 

  4. S.K. Chaluvadi et al., Epitaxial strain and thickness dependent structural, electrical and magnetic properties of La0. 67Sr0. 33MnO3 films. J. Phys. D Appl. Phys. 53(37), 375005 (2020)

    Article  Google Scholar 

  5. Y.-Y. Zhao et al., Abnormal percolative transport and colossal electroresistance induced by anisotropic strain in (011)-Pr 0.7 (Ca 0.6 Sr 0.4) 0.3 MnO 3/PMN-PT heterostructure. Sci. Rep. 4, 7075 (2014)

    Article  Google Scholar 

  6. H. Jeen, A. Biswas, Single domain to multidomain transition due to in-plane magnetic anisotropy in phase-separated (La 0.4 Pr 0.6) 0.67 Ca 0.33 MnO 3 thin films. Phys. Rev. B 83(6), 064408 (2011)

    Article  ADS  Google Scholar 

  7. T.Z. Ward, J.D. Budai, Z. Gai, J.Z. Tischler, L. Yin, J. Shen, Elastically driven anisotropic percolation in electronic phase-separated manganites. Nat. Phys. 5(12), 885–888 (2009)

    Article  Google Scholar 

  8. S. Dong, S. Yunoki, X. Zhang, C. Şen, J.-M. Liu, E. Dagotto, Highly anisotropic resistivities in the double-exchange model for strained manganites. Phys. Rev. B 82(3), 035118 (2010)

    Article  ADS  Google Scholar 

  9. T. Jiang et al., Colossal anisotropic resistivity and oriented magnetic domains in strained La0. 325Pr0. 3Ca0. 375MnO3 films. Appl. Phys. Lett. 104(20), 203501 (2014)

    Article  ADS  Google Scholar 

  10. F. Zhang et al., Anisotropic-strain-induced antiferromagnetic-insulating state with strong phase instability in epitaxial (La 0.8 Pr 0.2) 0.67 Ca 0.33 MnO 3 films. Appl. Phys. Lett. 96(6), 062507 (2010)

    Article  ADS  Google Scholar 

  11. Z. Huang et al., Tuning the ground state of La 0.67 Ca 0.33 MnO 3 films via coherent growth on orthorhombic NdGaO 3 substrates with different orientations. Phys. Rev. B 86(1), 014410 (2012)

    Article  ADS  Google Scholar 

  12. L. Hu et al., Static and dynamic signatures of anisotropic electronic phase separation in La 2/3 Ca 1/3 Mn O 3 thin films under anisotropic strain. Phys. Rev. B 97(21), 214428 (2018)

    Article  ADS  Google Scholar 

  13. L. Wang et al., Pseudomorphic strain induced strong anisotropic magnetoresistance over a wide temperature range in epitaxial La 0.67 Ca 0.33 MnO 3/NdGaO 3 (001) films. Appl. Phys. Lett. 97(24), 242507 (2010)

    Article  ADS  Google Scholar 

  14. L. Wang et al., Anisotropic resistivities in anisotropic-strain-controlled phase-separated La0. 67Ca0. 33MnO3/NdGaO3 (100) films. Appl. Phys. Lett. 103(7), 072407 (2013)

    Article  ADS  Google Scholar 

  15. R. Cai et al., Origin of different growth modes for epitaxial manganite films. J. Am. Ceram. Soc. 96(5), 1660–1665 (2013)

    Article  Google Scholar 

  16. H.-R. Zhang, Y.-B. Liu, S.-H. Wang, D.-S. Hong, W.-B. Wu, J.-R. Sun, Anisotropic transport properties in the phase-separated La0. 67Ca0. 33MnO3/NdGaO3 (001) films. Chin. Phys. B 25(7), 077306 (2016)

    Article  ADS  Google Scholar 

  17. Z. Huang, L. Wang, X. Tan, P. Chen, G. Gao, W. Wu, Phase evolution and the multiple metal-insulator transitions in epitaxially shear-strained La 0.67 Ca 0.33 MnO 3/NdGaO 3 (001) films. J. of Appl. Phys. 108(8), 083912 (2010)

    Article  ADS  Google Scholar 

  18. L. Wang et al., Annealing assisted substrate coherency and high-temperature antiferromagnetic insulating transition in epitaxial La0. 67Ca0. 33MnO3/NdGaO3 (001) films. AIP Adv. 3(5), 052106 (2013)

    Article  ADS  Google Scholar 

  19. J. Song et al., Spin-orbit-lattice coupling and magnetostriction of strained La 0.7 Ca 0.3 MnO 3 films. Phys. Rev. B 72(6), 060405 (2005)

    Article  ADS  Google Scholar 

  20. G. Singh-Bhalla, A. Biswas, A. Hebard, Tunneling magnetoresistance in phase-separated manganite nanobridges. Phys. Rev. B 80(14), 144410 (2009)

    Article  ADS  Google Scholar 

  21. H. Alagoz, B. Prasad, J. Jeon, M. Blamire, K. Chow, J. Jung, Phase shift of oscillatory magnetoresistance in a double-cross thin film structure of La 0.3 Pr 0.4 Ca 0.3 MnO 3 via strain-engineered elongation of electronic domains. Phys. Rev. B 97(8), 085129 (2018)

    Article  ADS  Google Scholar 

  22. J. Chen et al., Unusual giant anisotropic magnetoresistance in manganite strips. Appl. Phys. Lett. 104(24), 242405 (2014)

    Article  ADS  Google Scholar 

  23. D. Niebieskikwiat, J. Tao, J. Zuo, M. Salamon, Time-dependent phenomena in phase-separated electron-doped manganites. Phys. Rev. B 78(1), 014434 (2008)

    Article  ADS  Google Scholar 

  24. J. Tao, D. Niebieskikwiat, M. Salamon, J.J. Zuo, Lamellar phase separation and dynamic competition in La 0.23 Ca 0.77 MnO 3. Phys. Rev. Lett. 94(14), 147206 (2005)

    Article  ADS  Google Scholar 

  25. T.Z. Ward et al., Reemergent metal-insulator transitions in manganites exposed with spatial confinement. Phys. Rev. Lett. 100(24), 247204 (2008)

    Article  ADS  Google Scholar 

  26. M. Srivastava, A. Kaur, K. Maurya, V. Awana, H. Singh, Impact of strain on metamagnetic transitions in Sm0. 5Sr0. 5MnO3 thin films. Appl. Phys. Lett. 102(3), 032402 (2013)

    Article  ADS  Google Scholar 

  27. J. Wang, D. Cao, Y. Zhou, X. Wang, M. Chen, J. Gao, Effects of residual and tunable strain on the transport properties and electroresistance effects in thin films of La0. 39Pr0. 24Ca0. 37MnO3. J. Alloy. Compd. 649, 819–823 (2015)

    Article  Google Scholar 

  28. Y. Sun, Y. Zhao, R. Wang, Electric current-induced giant electroresistance in La0. 36Pr0. 265Ca0. 375MnO3 thin films. Chin. Phys. B 26(4), 047103 (2017)

    Article  ADS  Google Scholar 

  29. S. Jian, T.Z. Ward, L. Yin, Emergent phenomena in manganites under spatial confinement. Chin. Phys. B 22(1), 017501 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Iran National Science Foundation (INSF) for this project's financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kameli.

Ethics declarations

Conflict of interest

No conflict of interest exists in submitting this manuscript, and all authors approve the manuscript for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarifi, M., Kameli, P., Ghotbi Varzaneh, A. et al. Anisotropic resistivity and electroresistance in epitaxial La0.3Pr0.4Ca0.3MnO3 thin films. Appl. Phys. A 128, 175 (2022). https://doi.org/10.1007/s00339-022-05292-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05292-8

Keywords

Navigation