Skip to main content
Log in

Templating of inorganic nanomaterials by biomacromolecules and their assemblies

  • Published:
Polymer Science Series C Aims and scope Submit manuscript

Abstract

During the past decade biomacromolecules attracted tremendous attention as versatile materials for self-assembly, nanoconstruction, and templating. An increasing number of reports highlights creative applications of DNA, proteins, and their assemblies for construction of materials, which synthesis by traditional top-down techniques is not possible. This review summarizes various aspects of the application of biomacromolecules and their self-organized structures for building-up inorganic nanomaterials of different complicity by metallization or mineralization of natural templates. The central focus of the review is given to DNA-templated and DNA-directed synthesis of nanostructures, as the progress in the utilization of DNA for nanoconstruction is most considerable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Sissoeff, J. Grisvard, and E. Guille, Prog. Biophys. Mol. Biol. 31, 165 (1976).

    Article  CAS  Google Scholar 

  2. N. Makita, M. Ullner, and K. Yoshikawa, Macromolecules 39, 6200 (2006).

    Article  CAS  Google Scholar 

  3. M. Langlais, H. A. Tajmirriahi, and R. Savoie, Biopolymers 30, 743 (1990).

    Article  CAS  Google Scholar 

  4. A. A. Zinchenko, D. M. Baigl, N. Chen, O. Pyshkina, K. Endo, V. G. Sergeyev, and K. Yoshikawa, Biomacromolecules 9, 1981 (2008).

    Article  CAS  Google Scholar 

  5. J. Richter, Physica E-Low-Dimension. Syst. Nanostruct. 16, 157 (2003).

    Article  CAS  Google Scholar 

  6. M. Mertig, L. C. Ciacchi, R. Seidel, W. Pompe, and A. De Vita, Nano Lett. 2, 841 (2002).

    Article  CAS  Google Scholar 

  7. E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, Nature (London) 391, 775 (1998).

    Article  CAS  Google Scholar 

  8. Y. Hashimoto, Y. Matsuo, and K. Ijiro, Chem. Lett. 34, 112 (2005).

    Article  CAS  Google Scholar 

  9. H. Nakao, H. Shiigi, Y. Yamamoto, S. Tokonami, T. Nagaoka, S. Sugiyama, and T. Ohtani, Nano Lett. 3, 1391 (2003).

    Article  CAS  Google Scholar 

  10. N. Chen, A. A. Zinchenko, and K. Yoshikawa, Nanotechnology 17, 5224 (2006).

    Article  CAS  Google Scholar 

  11. W. E. Ford, O. Harnack, A. Yasuda, and J. M. Wessels, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 13, 1793 (2001).

    Article  CAS  Google Scholar 

  12. M. Mertig, R. Seidel, L. C. Ciacchi, M. Weigel, and W. Pompe, J. Phys. Chem. B 108, 10801 (2004).

    Google Scholar 

  13. J. Richter, M. Mertig, W. Pompe, I. Monch, and H. K. Schackert, Appl. Phys. Lett. 78, 536 (2001).

    Article  CAS  Google Scholar 

  14. A. T. Woolley and C. F. Monson, Nano Lett. 3, 359 (2003).

    Article  Google Scholar 

  15. D. T. Haynie, Q. Gu, and C. D. Cheng, Nanotechnology 16, 1358 (2005).

    Article  Google Scholar 

  16. H. A. Becerril, P. Ludtke, B. M. Willardson, and A. T. Woolley, Langmuir 22, 10140 (2006).

    Article  CAS  Google Scholar 

  17. M. Fischler, U. Simon, H. Nir, Y. Eichen, G. A. Burley, J. Gierlich, P. M. E. Gramlich, and T. Carell, Small 3, 1049 (2007).

    Article  CAS  Google Scholar 

  18. J. M. Kinsella and A. Ivanisevic, J. Am. Chem. Soc. 127, 3276 (2005).

    Article  CAS  Google Scholar 

  19. J. L. Coffer, S. R. Bigham, X. Li, R. F. Pinizzotto, Y. G. Rho, R. M. Pirtle, and I. L. Pirtle, Appl. Phys. Lett. 69, 3851 (1996).

    Article  CAS  Google Scholar 

  20. S. Y. Pu, A. Zinchenko, and S. Murata, Nanotechnology 22, 375604 (2011).

    Article  Google Scholar 

  21. Z. X. Wang, J. Y. Liu, K. Zhang, H. B. Cai, G. H. Zhang, Y. K. Wu, T. Kong, X. P. Wang, J. Chen, and J. G. Hou, J. Phys. Chem. C 113, 5428 (2009).

    Article  CAS  Google Scholar 

  22. T. Torimoto, M. Yamashita, S. Kuwabata, T. Sakata, H. Mori, and H. Yoneyama, J. Phys. Chem. B 103, 8799 (1999).

    Article  CAS  Google Scholar 

  23. L. Q. Dong, T. Hollis, B. A. Connolly, N. G. Wright, B. R. Horrocks, and A. Houlton, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 19, 1748 (2007).

    Article  CAS  Google Scholar 

  24. S. Kundu and H. Liang, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 20, 826 (2008).

    Article  CAS  Google Scholar 

  25. E. Braun, K. Keren, M. Krueger, R. Gilad, G. Ben- Yoseph, and U. Sivan, Science (Washington, D. C.) 297, 72 (2002).

    Article  Google Scholar 

  26. Y. Fang and J. H. Hoh, Nucleic Acids Res. 26, 588 (1998).

    Article  CAS  Google Scholar 

  27. V. V. Vasilevskaya, A. R. Khokhlov, S. Kidoaki, and K. Yoshikawa, Biopolymers 41, 51 (1997).

    Article  CAS  Google Scholar 

  28. T. C. Preston and R. Signorell, Langmuir 26, 10250 (2010).

    Article  CAS  Google Scholar 

  29. A. A. Zinchenko, K. Yoshikawa, and D. Baigl, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 17, 2820 (2005).

    Article  CAS  Google Scholar 

  30. S. X. Dai, X. T. Zhang, T. F. Li, Z. L. Du, and H. X. Dang, Appl. Surf. Sci. 249, 346 (2005).

    Article  CAS  Google Scholar 

  31. Z. X. Deng and C. D. Mao, Nano Lett. 3, 1545 (2003).

    Article  CAS  Google Scholar 

  32. A. A. Zinchenko, S. Y. Pu, and S. Murata, Langmuir 27, 5009 (2011).

    Article  Google Scholar 

  33. S. Pu, A. A. Zinchenko, and S. Murata, J. Nanosci. Nanotechnol. (in press).

  34. T. Scheibel, R. Parthasarathy, G. Sawicki, X. M. Lin, H. Jaeger, and S. L. Lindquist, Proc. Natl. Acad. Sci. U. S. A. 100, 4527 (2003).

    Article  CAS  Google Scholar 

  35. S. Padalkar, J. D. Hulleman, S. M. Kim, J. C. Rochet, E. A. Stach, and L. A. Stanciu, Nanotechnology 19, 275602 (2008).

    Article  CAS  Google Scholar 

  36. M. T. Kumara, B. C. Tripp, and S. Muralidharan, J. Phys. Chem. C 111, 5276 (2007).

    Article  CAS  Google Scholar 

  37. T. Nishinaka, A. Takano, Y. Doi, M. Hashimoto, A. Nakamura, Y. Matsushita, J. Kumaki, and E. Yashima, J. Am. Chem. Soc. 127, 8120 (2005).

    Article  CAS  Google Scholar 

  38. M. Reches and E. Gazit, Science (Washington, D. C.) 300, 625 (2003).

    Article  CAS  Google Scholar 

  39. R. Djalali, J. Samson, and H. Matsui, J. Am. Chem. Soc. 126, 7935 (2004).

    Article  CAS  Google Scholar 

  40. T. Ueno, M. Suzuki, T. Goto, T. Matsumoto, K. Nagayama, and Y. Watanabe, Angew Chem., Int. Ed. Engl. 43, 2527 (2004).

    Article  CAS  Google Scholar 

  41. I. Yamashita, J. Hayashi, and M. Hara, Chem. Lett. 33, 1158 (2004).

    Article  CAS  Google Scholar 

  42. M. Bergkvist, S. S. Mark, X. Yang, E. R. Angert, and C. A. Batt, J. Phys. Chem. B 108, 8241 (2004).

    Article  CAS  Google Scholar 

  43. C. B. Mao, D. J. Solis, B. D. Reiss, S. T. Kottmann, R. Y. Sweeney, A. Hayhurst, G. Georgiou, B. Iverson, and A. M. Belcher, Science (Washington, D. C.) 303, 213 (2004).

    Article  CAS  Google Scholar 

  44. C. B. Mao, C. E. Flynn, A. Hayhurst, R. Sweeney, J. F. Qi, G. Georgiou, B. Iverson, and A. M. Belcher, Proc. Natl. Acad. Sci. U. S. A. 100, 6946 (2003).

    Article  CAS  Google Scholar 

  45. Z. K. Zhang and J. Buitenhuis, Small 3, 424 (2007).

    Article  CAS  Google Scholar 

  46. M. Knez, A. M. Bittner, F. Boes, C. Wege, H. Jeske, E. Maiss, and K. Kern, Nano Lett. 3, 1079 (2003).

    Article  CAS  Google Scholar 

  47. A. S. Blum, C. M. Soto, C. D. Wilson, J. D. Cole, M. Kim, B. Gnade, A. Chatterji, W. F. Ochoa, T. W. Lin, J. E. Johnson, and B. R. Ratna, Nano Lett. 4, 867 (2004).

    Article  CAS  Google Scholar 

  48. E. Winfree, F. R. Liu, L. A. Wenzler, and N. C. Seeman, Nature (London) 394, 539 (1998).

    Article  CAS  Google Scholar 

  49. P. W. K. Rothemund, Nature (London) 440, 297 (2006).

    Article  CAS  Google Scholar 

  50. B. Hogberg, T. Liedl, and W. M. Shih, J. Am. Chem. Soc. 131, 9154 (2009).

    Article  CAS  Google Scholar 

  51. W. M. Shih, J. D. Quispe, and G. F. Joyce, Nature (London) 427, 618 (2004).

    Article  CAS  Google Scholar 

  52. E. S. Andersen, M. Dong, M. M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh, M. M. Golas, B. Sander, H. Stark, C. L. P. Oliveira, J. S. Pedersen, V. Birkedal, F. Besenbacher, K. V. Gothelf, and J. Kjems, Nature (London) 459, 73 (2009).

    Article  CAS  Google Scholar 

  53. J. Liu, Y. Geng, E. Pound, S. Gyawali, J. R. Ashton, J. Hickey, A. T. Woolley, and J. N. Harb, ACS Nano 5, 2240 (2011).

    Article  CAS  Google Scholar 

  54. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, Nature (London) 382, 607 (1996).

    Article  CAS  Google Scholar 

  55. F. A. Aldaye and H. F. Sleiman, Angew Chem., Int. Ed. Engl. 45, 2204 (2006).

    Article  CAS  Google Scholar 

  56. C. J. Loweth, W. B. Caldwell, X. G. Peng, A. P. Alivisatos, and P. G. Schultz, Angew Chem., Int. Ed. Engl. 38, 1808 (1999).

    Article  CAS  Google Scholar 

  57. S. Pal, Z. T. Deng, B. Q. Ding, H. Yan, and Y. Liu, Angew Chem., Int. Ed. Engl. 49, 2700 (2010).

    Article  CAS  Google Scholar 

  58. B. Q. Ding, Z. T. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, J. Am. Chem. Soc. 132, 3248 (2010).

    Article  CAS  Google Scholar 

  59. M. Pilo-Pais, S. Goldberg, E. Samano, T. H. LaBean, and G. Finkelstein, Nano Lett. 11, 3489 (2011).

    Article  CAS  Google Scholar 

  60. Z. X. Deng, Y. Tian, S. H. Lee, A. E. Ribbe, and C. D. Mao, Angew Chem., Int. Ed. Engl. 44, 3582 (2005).

    Article  CAS  Google Scholar 

  61. S. Beyer, P. Nickels, and F. C. Simmel, Nano Lett. 5, 719 (2005).

    Article  CAS  Google Scholar 

  62. J. P. Zhang, Y. Liu, Y. G. Ke, and H. Yan, Nano Lett. 6, 248 (2006).

    Article  CAS  Google Scholar 

  63. J. W. Zheng, P. E. Constantinou, C. Micheel, A. P. Alivisatos, R. A. Kiehl, and N. C. Seeman, Nano Lett. 6, 1502 (2006).

    Article  CAS  Google Scholar 

  64. D. Nykypanchuk, M. M. Maye, D. Van der Lelie, and O. Gang, Nature (London) 451, 549 (2008).

    Article  CAS  Google Scholar 

  65. J. Sharma, R. Chhabra, A. Cheng, J. Brownell, Y. Liu, and H. Yan, Science (Washington, D. C.) 323, 112 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly A. Zinchenko.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zinchenko, A.A. Templating of inorganic nanomaterials by biomacromolecules and their assemblies. Polym. Sci. Ser. C 54, 80–87 (2012). https://doi.org/10.1134/S1811238212070077

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238212070077

Keywords

Navigation