Skip to main content

DNA-Directed Assembly of Nanophase Materials: An Updated Review

  • Chapter
  • First Online:
DNA Nanotechnology

Abstract

DNA nanotechnology makes use of DNA strands to build highly engineerable supramolecular structures from the bottom-up. Such a research field has been experiencing a fruitful development during the past decades. In materials science, an ambitious goal is to obtain materials with designable structures and predictable functions based on a suitable synthetic strategy. The rapid growth and expansion of the area of DNA nanotechnology have provided a useful technological platform suitable to demonstrate DNA’s unique roles in nanomaterials science. Although nanoparticle-based materials have been employed for controllable DNA conjugation and DNA-programmable self-assembly, some challenges still exist. In this chapter, we try to highlight the latest developments in DNA-directed nanophase materials, including new strategies for DNA decoration of gold and carbon-based nanomaterials, DNA origami-based nanoassembly templates, and DNA-conjugated non-gold nanoparticles with specifiable bonding valences, in response to the challenges we are currently facing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99:237–247

    Article  CAS  Google Scholar 

  2. Seeman NC (2003) DNA in a material world. Nature 421:427–431

    Article  Google Scholar 

  3. Zheng JP, Birktoft JJ, Chen Y, Wang T, Sha RJ, Constantinou PE, Ginell SL, Mao CD, Seeman NC (2009) From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461:74–77

    Article  CAS  Google Scholar 

  4. Pinheiro AV, Han DR, Shih WM, Yan H (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6:763–772

    Article  CAS  Google Scholar 

  5. Deng ZX, Lee SH, Mao CD (2005) DNA as nanoscale building blocks. J Nanosci Nanotechnol 5:1954–1963

    Article  CAS  Google Scholar 

  6. Aldaye FA, Palmer AL, Sleiman HF (2008) Assembling materials with DNA as the guide. Science 321:1795–1799

    Article  CAS  Google Scholar 

  7. Lin CX, Liu Y, Rinker S, Yan H (2006) DNA tile based self-assembly: building complex nanoarchitectures. Chemphyschem 7:1641–1647

    Article  CAS  Google Scholar 

  8. Seeman NC (2010) Nanomaterials based on DNA. Annu Rev Biochem 79:65–87

    Article  CAS  Google Scholar 

  9. Tan SJ, Campolongo MJ, Luo D, Cheng WL (2011) Building plasmonic nanostructures with DNA. Nat Nanotechnol 6:268–276

    Article  CAS  Google Scholar 

  10. Cutler JI, Auyeung E, Mirkin CA (2012) Spherical nucleic acids. J Am Chem Soc 134:1376–1391

    Article  CAS  Google Scholar 

  11. Deng ZX, Chen Y, Tian Y, Mao CD (2006) A fresh look at DNA nanotechnology. In: Chen J, Jonoska N, Rozenberg G (eds) Nanotechnology: science and computation. Springer, Heidelberg, pp 23–24

    Google Scholar 

  12. Zheng YQ, Deng ZX (2011) Nanostructures and nanomaterials via DNA-based self-assembly. In: Jin JI, Grote J (eds) Materials science of DNA. CRC, Boca Raton, pp 13–48

    Chapter  Google Scholar 

  13. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  Google Scholar 

  14. Alivisatos AP, Johnsson KP, Peng XG, Wilson TE, Loweth CJ, Bruchez MP Jr, Schultz PG (1996) Organization of ‘nanocrystal molecules’ using DNA. Nature 382:609–611

    Google Scholar 

  15. Xiao SJ, Liu FR, Rosen AE, Hainfeld JF, Seeman NC, Musier-Forsyth K, Kiehl RA (2002) Self-assembly of metallic nanoparticle arrays by DNA scaffolding. J Nanopart Res 4:313–317

    Article  CAS  Google Scholar 

  16. Loweth CJ, Caldwell WB, Peng XG, Alivisatos AP, Schultz PG (1999) DNA-based assembly of gold nanocrystals. Angew Chem Int Ed 38:1808–1812

    Article  CAS  Google Scholar 

  17. Zanchet D, Micheel CM, Parak WJ, Gerion D, Alivisatos AP (2001) Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nano Lett 1:32–35

    Article  CAS  Google Scholar 

  18. Parak WJ, Pellegrino T, Micheel CM, Gerion D, Williams SC, Alivisatos AP (2003) Conformation of oligonucleotides attached to gold nanocrystals probed by gel electrophoresis. Nano Lett 3:33–36

    Article  CAS  Google Scholar 

  19. Deng ZX, Tian Y, Lee SH, Ribbe AE, Mao CD (2005) DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays. Angew Chem Int Ed 44:3582–3585

    Article  CAS  Google Scholar 

  20. Fire A, Xu SQ (1995) Rolling replication of short DNA circles. Proc Natl Acad Sci USA 92:4641–4645

    Article  CAS  Google Scholar 

  21. Liu DY, Daubendiek SL, Zillman MA, Ryan K, Kool ET (1996) Rolling circle DNA synthesis: small circular oligonucleotides as efficient templates for DNA polymerases. J Am Chem Soc 118:1587–1594

    Article  CAS  Google Scholar 

  22. Deng ZX, Mao CD (2003) DNA-templated fabrication of 1D parallel and 2D crossed metallic nanowire arrays. Nano Lett 3:1545–1548

    Article  CAS  Google Scholar 

  23. Sharma J, Chhabra R, Liu Y, Ke YG, Yan H (2006) DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. Angew Chem Int Ed 45:730–735

    Article  CAS  Google Scholar 

  24. Zheng JW, Constantinou PE, Micheel C, Alivisatos AP, Kiehl RA, Seeman NC (2006) Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett 6:1502–1504

    Article  CAS  Google Scholar 

  25. Mastroianni AJ, Claridge SA, Alivisatos AP (2009) Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J Am Chem Soc 131:8455–8459

    Article  CAS  Google Scholar 

  26. Sharma J, Chhabra R, Cheng A, Brownell J, Liu Y, Yan H (2009) Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323:112–116

    Article  CAS  Google Scholar 

  27. Shen XB, Song C, Wang JY, Shi DW, Wang ZG, Liu N, Ding BQ (2012) Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J Am Chem Soc 134:146–149

    Article  CAS  Google Scholar 

  28. Xing H, Wang ZD, Xu ZD, Wong NY, Xiang Y, Liu GL, Lu Y (2012) DNA-directed assembly of asymmetric nanoclusters using Janus nanoparticles. ACS Nano 6:802–809

    Article  CAS  Google Scholar 

  29. Huo FW, Lytton-Jean AKR, Mirkin CA (2006) Asymmetric functionalization of nanoparticles based on thermally addressable DNA interconnects. Adv Mater 18:2304–2306

    Article  CAS  Google Scholar 

  30. Li ZT, Cheng EJ, Huang WX, Zhang T, Yang ZQ, Liu DS, Tang ZY (2011) Improving the yield of mono-DNA-functionalized gold nanoparticles through dual steric hindrance. J Am Chem Soc 133:15284–15287

    Article  CAS  Google Scholar 

  31. Maye MM, Nykypanchuk D, Cuisinier M, van der Lelie D, Gang O (2009) Stepwise surface encoding for high-throughput assembly of nanoclusters. Nat Mater 8:388–391

    Article  CAS  Google Scholar 

  32. Kim JW, Kim JH, Deaton R (2011) DNA-linked nanoparticle building blocks for programmable matter. Angew Chem Int Ed 50:9185–9190

    Article  CAS  Google Scholar 

  33. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  CAS  Google Scholar 

  34. Zhao Z, Yan H, Liu Y (2010) A route to scale up DNA origami using DNA tiles as folding staples. Angew Chem Int Ed 49:1414–1417

    Article  CAS  Google Scholar 

  35. Zhao Z, Jacovetty EL, Liu Y, Yan H (2011) Encapsulation of gold nanoparticles in a DNA origami cage. Angew Chem Int Ed 50:2041–2044

    Article  CAS  Google Scholar 

  36. Pal S, Deng ZT, Wang HN, Zou SL, Liu Y, Yan H (2011) DNA directed self-assembly of anisotropic plasmonic nanostructures. J Am Chem Soc 133:17606–17609

    Article  CAS  Google Scholar 

  37. Kuzyk A, Schreiber R, Fan ZY, Pardatscher G, Roller EM, H\( \ddot{\rm o}\)gele A, Simmel FC, GovorovAO, Liedl T (2012) DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483:311–314

    Article  CAS  Google Scholar 

  38. Li YL, Zheng YQ, Gong M, Deng ZX (2012) Pt nanoparticles decorated with a discrete number of DNA molecules for programmable assembly of Au-Pt bimetallic superstructures. Chem Commun 48:3727–3729

    Article  CAS  Google Scholar 

  39. Gu HZ, Chao J, Xiao SJ, Seeman NC (2010) A proximity-based programmable DNA nanoscale assembly line. Nature 465:202–205

    Article  CAS  Google Scholar 

  40. Pal S, Sharma J, Yan H, Liu Y (2009) Stable silver nanoparticle–DNA conjugates for directed self-assembly of core-satellite silver-gold nanoclusters. Chem Commun 45:6059–6061

    Google Scholar 

  41. Pal S, Deng ZT, Ding BQ, Yan H, Liu Y (2010) DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. Angew Chem Int Ed 49:2700–2704

    Article  CAS  Google Scholar 

  42. Carstairs HMJ, Lymperopoulos K, Kapanidis AN, Bath J, Turberfield AJ (2009) DNA monofunctionalization of quantum dots. Chembiochem 10:1781–1783

    Article  CAS  Google Scholar 

  43. Fu AH, Micheel CM, Cha J, Chang H, Yang H, Alivisatos AP (2004) Discrete nanostructures of quantum dots/Au with DNA. J Am Chem Soc 126:10832–10833

    Article  CAS  Google Scholar 

  44. Lee JH, Wernette DP, Yigit MV, Liu JW, Wang ZD, Lu Y (2007) Site-specific control of distances between gold nanoparticles using phosphorothioate anchors on DNA and a short bifunctional molecular fastener. Angew Chem Int Ed 46:9006–9010

    Article  CAS  Google Scholar 

  45. Ma N, Sargent EH, Kelley SO (2009) One-step DNA-programmed growth of luminescent and biofunctionalized nanocrystals. Nat Nanotechnol 4:121–125

    Article  CAS  Google Scholar 

  46. Tikhomirov G, Hoogland S, Lee PE, Fischer A, Sargent EH, Kelley SO (2011) DNA-based programming of quantum dot valency, self-assembly and luminescence. Nat Nanotechnol 6:485–490

    Article  CAS  Google Scholar 

  47. Bethune DS, Klang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607

    Article  CAS  Google Scholar 

  48. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  49. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  50. Williams KA, Veenhuizen PTM, de la Torre BG, Eritja R, Dekker C (2002) Nanotechnology: carbon nanotubes with DNA recognition. Nature 420:761

    Article  CAS  Google Scholar 

  51. Li SN, He PG, Dong JH, Guo ZX, Dai LM (2005) DNA-directed self-assembling of carbon nanotubes. J Am Chem Soc 127:14–15

    Article  CAS  Google Scholar 

  52. Liu J, Rinzler AG, Dai HJ, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE (1998) Fullerene pipes. Science 280:1253–1256

    Article  CAS  Google Scholar 

  53. Zhang J, Zou HL, Qing Q, Yang YL, Li QW, Liu ZF, Guo XY, Du ZL (2003) Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B 107:3712–3718

    Article  CAS  Google Scholar 

  54. Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342

    Article  CAS  Google Scholar 

  55. Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS, Mclean RS, Onoa GB, Samsonidze GG, Semke ED, Usrey M, Walls DJ (2003) Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302:1545–1548

    Article  CAS  Google Scholar 

  56. Tu XM, Manohar S, Jagota A, Zheng M (2009) DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460:250–253

    Article  CAS  Google Scholar 

  57. Li YL, Han XG, Deng ZX (2007) Grafting single-walled carbon nanotubes with highly hybridizable DNA sequences: potential building blocks for DNA-programmed material assembly. Angew Chem Int Ed 46:7481–7484

    Article  CAS  Google Scholar 

  58. Maune HT, Han SP, Barish RD, Bockrath M, Goddard WA III, Rothemund PWK, Winfree E (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol 5:61–66

    Article  CAS  Google Scholar 

  59. Han XG, Li YL, Deng ZX (2007) DNA-wrapped single-walled carbon nanotubes as rigid templates for assembling linear gold nanoparticle arrays. Adv Mater 19:1518–1522

    Article  CAS  Google Scholar 

  60. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  61. Mattevi C, Kim H, Chhowalla M (2011) A review of chemical vapour deposition of graphene on copper. J Mater Chem 21:3324–3334

    Article  CAS  Google Scholar 

  62. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  CAS  Google Scholar 

  63. Liu JB, Li YL, Li YM, Li JH, Deng ZX (2010) Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal-carbon hybrid nanostructures via self-assembly. J Mater Chem 20:900–906

    Article  CAS  Google Scholar 

  64. Cao YW, Jin RC, Mirkin CA (2001) DNA-modified core-shell Ag/Au nanoparticles. J Am Chem Soc 123:7961–7962

    Article  CAS  Google Scholar 

  65. Lee JS, Lytton-Jean AKR, Hurst SJ, Mirkin CA (2007) Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett 7:2112–2115

    Article  CAS  Google Scholar 

  66. Liz-Marzán LM, Lado-Touriño I (1996) Reduction and stabilization of silver nanoparticles in ethanol by nonionic surfactants. Langmuir 12:3585–3589

    Article  Google Scholar 

  67. Zheng YQ, Li YL, Deng ZX (2012) Silver-nanoparticle-DNA bionanoconjugates bearing a discrete number of DNA ligands. Chem Commun 48:6160–6162

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from NSFC (Grant No. 21273214, 91023005, and 20873134) and the Fundamental Research Funds for the Central Universities (Grant No. WK206019, WK207019, and WK2060190018) was gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxiang Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, H., Deng, Z. (2013). DNA-Directed Assembly of Nanophase Materials: An Updated Review. In: Fan, C. (eds) DNA Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36077-0_8

Download citation

Publish with us

Policies and ethics