Skip to main content
Log in

Molecular dynamics simulation of the physicochemical properties of silicon nanoparticles containing 73 atoms

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The physicochemical properties of 73-atom silicon nanoparticles that have a crystal structure, a random atomic packing, and a packing formed by inserting a 13-atom icosahedron into a 60-atom fullerene are investigated using the molecular dynamics method. Analysis of the behavior of the internal energy, the radial distribution function, the distribution of bond angles, and the specific heat at a constant pressure C p in the temperature range 10–1710 K indicates that a crystalline nanoparticle undergoes melting at a temperature of 710 K and that the structural transformations occurring in particles with an irregular atomic packing exhibit specific features. It is demonstrated that the temperature dependence of the self-diffusion coefficient follows a linear behavior. Local deviations from the linear behavior are most pronounced for the crystalline nanoparticle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, Y., Kim, Y.-H., Du, M.-H., and Zhang, S.B., First-Principles Prediction of Icosahedral Quantum Dots for Tetravalent Semiconductors, Phys. Rev. Lett., 2004, vol. 93, p. 015502.

  2. Chen, Z., Jiao, H., Seifert, G., Horn, A.H.C., Yu, D., Clark, T., Thiel, W., and von Ragué Schleyer, P., The Structure and Stability of Si60 and Ge60 Cages: A Computational Study, J. Comput. Chem., 2003, vol. 24, pp. 948–953.

    Article  CAS  Google Scholar 

  3. Nishio, K., Koga, J., Yamaguchi, T., and Yonezawa, F., Theoretical Study of Light-Emission Properties of Amorphous Silicon Quantum Dots, Phys. Rev. B: Condens. Matter, 2003, vol. 67, p. 195304.

  4. Park, N.-M., Choi, C.-J., Seong, T.-Y., and Park, S.-J., Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride, Phys. Rev. Lett., 2001, vol. 86, pp. 1355–1357.

    Article  CAS  Google Scholar 

  5. Kim, B.-H., Cho, C.-H., Kim, T.-W., Park, N.-M., Sung, G.-Y., and Park, S.-J., Photoluminescence of Silicon Quantum Dots in Silicon Nitride Grown by NH3 and SiH4, Appl. Phys. Lett., 2005, vol. 86, p. 091908.

    Article  Google Scholar 

  6. Tersoff, J., New Empirical Model for the Structural Properties of Silicon, Phys. Rev. Lett., 1986, vol. 56, no. 6, pp. 632–635.

    Article  CAS  Google Scholar 

  7. Tersoff, J., New Empirical Approach for the Structure and Energy of Covalent Systems, Phys. Rev. B: Condens. Matter, 1988, vol. 37, no. 10, pp. 6991–7000.

    Google Scholar 

  8. Vink, R.L.C., Barkema, G.T., van der Weg, W.F., and Mousseau, N., Fitting the Stillinger-Weber Potential to Amorphous Silicon, J. Non-Cryst. Solids, 2001, vol. 282, pp. 248–255.

    Article  CAS  Google Scholar 

  9. Zhang, L. and Jiang, S., Molecular Simulation Study of Nanoscale Friction for Alkyl Monolayers on Si(111), J. Chem. Phys., 2002, vol. 117, no. 4, pp. 1804–1811.

    Article  CAS  Google Scholar 

  10. Polukhin, V.A. and Vatolin, N.A., Carbon: From a Melt to a Fullerene, Rasplavy, 1998, no. 4, pp. 3–32.

  11. Spravochnik khimika (A Handbook for Chemists), Nikol’skii, V.P., Ed., Leningrad: Khimiya, 1971, vol. 1 [in Russian].

    Google Scholar 

  12. Bellisent, R., Menelle, A., Howells, W.S., Wright, A.C., Brunier, T.M., Sinclair, R.N., and Jansen, F., The Structure of Amorphous Si: H Using Steady-State and Pulsed Neutron Sources, Physica B (Amsterdam), 1989, vols. 156–157, pp. 217–219.

    Google Scholar 

  13. Kubicki, J.D. and Lasaga, A.C., Molecular Dynamics Simulations of SiO2 Melt and Glass: Ionic and Covalent Moldels, Am. Mineral., 1988, vol. 73, pp. 941–955.

    CAS  Google Scholar 

  14. Zachariah, M.R., Carrier, M.J., and Blaisten-Barojas, E., Properties of Silicon Nanoparticles: A Molecular Dynamics Study, J. Phys. Chem., 1996, vol. 100, pp. 14856–14864.

    Article  CAS  Google Scholar 

  15. Hawa, T. and Zachariah, M.R., Internal Pressure and Surface Tension of Bare and Hydrogen Coated Silicon Nanoparticles, J. Chem. Phys., 2004, vol. 121, no. 18, pp. 9043–9049.

    Article  CAS  Google Scholar 

  16. Miranda, C.R. and Antonelli, A., Transitions between Disordered Phases in Supercooled Liquid Silicon, J. Chem. Phys., 2004, vol. 120, no. 24, pp. 11672–11676.

    Article  CAS  Google Scholar 

  17. Bazarov, I.P., Termodinamika (Thermodynamics), Moscow: Vysshaya Shkola, 1976 [in Russian].

    Google Scholar 

  18. Kawazoe, Y., Kondow, T., and Ohno, K. Clusters and Nanomaterials: Theory and Experiment, Berlin: Springer-Verlag, 2002.

    Google Scholar 

  19. Baidakov, V.G., Galashev, A.E., and Skripov, V.P., Stability of a Superheated Crystal in the Molecular Dynamics Model of Argon, Fiz. Tverd. Tela (Leningrad), 1980, vol. 22, no. 9, pp. 2681–2687 [Sov. Phys. Solid State (Engl. transl.), 1980, vol. 22, no. 9, pp. 1565–1568].

    CAS  Google Scholar 

  20. Nishio, K., Morishita, T., Shinoda, W., and Mikami, M., Molecular Dynamics Simulation of Icosahedral Si Quantum Dot Formation from Liquid Droplets, Phys. Rev. B: Condens. Matter, 2005, vol. 72, p. 24532.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.E. Galashev, V.A. Polukhin, I.A. Izmodenov, O.R. Rakhmanova, 2007, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galashev, A.E., Polukhin, V.A., Izmodenov, I.A. et al. Molecular dynamics simulation of the physicochemical properties of silicon nanoparticles containing 73 atoms. Glass Phys Chem 33, 86–95 (2007). https://doi.org/10.1134/S1087659607010130

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659607010130

Keywords

Navigation