Skip to main content
Log in

Proton form factors and two-photon exchange in elastic electron-proton scattering

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Proton electromagnetic form factors are among the most important sources of information about the internal structure of the proton. Two different methods for measuring these form factors, the method proposed by Rosenbluth and the polarization-transfer method, yield contradictory results. It is assumed that this contradiction can be removed upon taking into account the hard part of the contribution of two-photon exchange to the cross section for elastic electron-proton scattering. This contribution can measured experimentally via a precision comparison of the cross sections for the elastic scattering of positrons and electrons on protons. Such a measurement, performed at the VEPP-3 storage ring in Novosibirsk at the beam energies of 1.6 and 1.0 GeV for positron (electron) scattering angles in the ranges of θ e = 15°–25° and 55°–75° in the first case and in the range of θ e = 65°–105° in the second case is described in the present article. Preliminary results of this experiment and their comparison with theoretical predictions are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hofstadter, Rev. Mod. Phys. 28, 214 (1956).

    Article  ADS  Google Scholar 

  2. L. Andivahis, P. E. Bosted, A. Lung, et al., Phys. Rev. D 50, 5491 (1994).

    Article  ADS  Google Scholar 

  3. R. C. Walker, B.W. Filippone, J. Jourdan, et al., Phys. Rev. D 49, 5671 (1994).

    Article  ADS  Google Scholar 

  4. B. Wojtsekhowski, arXiv:1401.0859 [nucl-ex].

  5. E. L. Lomon, Phys. Rev. C 66, 045501 (2002).

    Article  ADS  Google Scholar 

  6. I. I. Balitsky, V. M. Braun, and A. V. Kolesnichenko, Nucl. Phys. B 312, 509 (1989).

    Article  ADS  Google Scholar 

  7. I. V. Anikin, V. M. Braun, and N. Offen, Phys. Rev. D 88, 114021 (2013).

    Article  ADS  Google Scholar 

  8. M. R. Frank, B. K. Jennings, and G. A. Miller, Phys. Rev. C 54, 920 (1996).

    Article  ADS  Google Scholar 

  9. G. A. Miller and M. R. Frank, Phys. Rev. C 65, 065205 (2002).

    Article  ADS  Google Scholar 

  10. G. A. Miller, Phys. Rev. C 66, 032201(R) (2002).

    Article  ADS  Google Scholar 

  11. I. C. Cloët and C. D. Roberts, Prog. Part. Nucl. Phys. 77, 1 (2014).

    Article  ADS  Google Scholar 

  12. I. C. Cloët, C. D. Roberts, and A.W. Thomas, Phys. Rev. Lett. 111, 101803 (2013).

    Article  ADS  Google Scholar 

  13. G. S. Bali, S. Collins, M. Deka, et al., Phys. Rev. D 86, 054504 (2012).

    Article  ADS  Google Scholar 

  14. C. Alexandrou, M. Constantinou, S. Dinter, et al., Phys. Rev. D 88, 014509 (2013).

    Article  ADS  Google Scholar 

  15. M. N. Rosenbluth, Phys. Rev. 79, 615 (1950).

    Article  ADS  MATH  Google Scholar 

  16. A. I. Akhiezer and M. P. Rekalo, Sov. Phys. Dokl. 13, 572 (1968).

    ADS  Google Scholar 

  17. A. I. Akhiezer and M. P. Rekalo, Sov. J. Part. Nucl. 4, 277 (1974).

    Google Scholar 

  18. M. K. Jones, K. A. Aniol, F. T. Baker, et al., Phys. Rev. Lett. 84, 1398 (2000).

    Article  ADS  Google Scholar 

  19. O. Gayou, K. A. Aniol, T. Averett, et al., Phys. Rev. Lett. 88, 092301 (2002).

    Article  ADS  Google Scholar 

  20. V. Punjabi, C. F. Perdrisat, K. A. Aniol, et al., Phys. Rev. C 71, 055202 (2005).

    Article  ADS  Google Scholar 

  21. A. J. R. Puckett, E. J. Brash, M. K. Jones, et al., Phys. Rev. Lett. 104, 242301 (2010).

    Article  ADS  Google Scholar 

  22. M. Meziane, E. J. Brash, R. Gilman, et al., Phys. Rev. Lett. 106, 132501 (2011).

    Article  ADS  Google Scholar 

  23. A. J. R. Puckett, E. J. Brash, O. Gayou, et al., Phys. Rev. C 85, 045203 (2012).

    Article  ADS  Google Scholar 

  24. I. A. Qattan, J. Arrington, R. E. Segel, et al., Phys. Rev. Lett. 94, 142301 (2005).

    Article  ADS  Google Scholar 

  25. M. E. Christy, A. Ahmidouch, C. S. Armstrong, et al., Phys. Rev. C 70, 015206 (2004).

    Article  ADS  Google Scholar 

  26. P. A. M. Guichon and M. Vanderhaeghen, Phys. Rev. Lett. 91, 142303 (2003).

    Article  ADS  Google Scholar 

  27. P.G. Blunden, W. Melnitchouk, and J. A. Tjon, Phys. Rev. Lett. 91, 142304 (2003).

    Article  ADS  Google Scholar 

  28. J. Arrington, Phys. Rev. C 68, 034325 (2003).

    Article  ADS  Google Scholar 

  29. D. Yount and J. Pine, Phys. Rev. 128, 1842 (1962).

    Article  ADS  Google Scholar 

  30. A. Browman, F. Liu, and C. Schaerf, Phys. Rev. 139, B1079 (1965).

    Article  ADS  Google Scholar 

  31. R. L. Anderson, B. Borgia, G. L. Cassiday, et al., Phys. Rev. Lett. 17, 407 (1966).

    Article  ADS  Google Scholar 

  32. W. Bartel, B. Dudelzak, H. Krehbiel, et al., Phys. Lett. B 25, 242 (1967).

    Article  ADS  Google Scholar 

  33. B. Bouquet, D. Benaksas, B. Grossetête, et al., Phys. Lett. B 26, 178 (1968).

    Article  ADS  Google Scholar 

  34. R. L. Anderson, B. Borgia, G. L. Cassiday, et al., Phys. Rev. 166, 1336 (1968).

    Article  ADS  Google Scholar 

  35. J. Mar, B. C. Barish, J. Pine, et al., Phys. Rev. Lett. 21, 482 (1968).

    Article  ADS  Google Scholar 

  36. P. G. Blunden, W. Melnitchouk, and J. A. Tjon, Phys. Rev. C 72, 034612 (2005); P. G. Blunden, private commun.

    Article  ADS  Google Scholar 

  37. J. Arrington and I. Sick, Phys. Rev. C 70, 028203 (2004).

    Article  ADS  Google Scholar 

  38. I. A. Qattan, A. Alsaad, and J. Arrington, Phys. Rev. C 84, 054317 (2011).

    Article  ADS  Google Scholar 

  39. E. Tomasi-Gustafsson, M. Osipenko, E. A. Kuraev, and Yu. M. Bystritskiy, Phys. At. Nucl. 76, 937 (2013); E. Tomasi-Gustafsson, private commun.

    Article  Google Scholar 

  40. D. Borisyuk and A. Kobushkin, Phys. Rev. C 78, 025208 (2008).

    Article  ADS  Google Scholar 

  41. J. C. Bernauer, M.O. Distler, J. Friedrich, et al., Phys. Rev. C 90, 015206 (2014).

    Article  ADS  Google Scholar 

  42. J. Arrington, W. Melnitchouk, and J. Tjon, Phys. Rev. C 76, 035205 (2007).

    Article  ADS  Google Scholar 

  43. Y.-C. Chen, A. Afanasev, S. J. Brodsky, et al., Phys. Rev. Lett. 93, 122301 (2004).

    Article  ADS  Google Scholar 

  44. N. Kivel and M. Vanderhaeghen, Phys. Rev. Lett. 103, 092004 (2009).

    Article  ADS  Google Scholar 

  45. Yu. M. Bystritskiy, E. A. Kuraev, and E. Tomasi-Gustafsson, Phys. Rev. C 75, 015207 (2007).

    Article  ADS  Google Scholar 

  46. A. V. Afanasev, S. J. Brodsky, C. E. Carlson, et al., Phys. Rev. D 72, 013008 (2005).

    Article  ADS  Google Scholar 

  47. M. Kohl, AIP Conf. Proc. 1160, 19 (2009).

    ADS  Google Scholar 

  48. L. B. Weinstein, AIP Conf. Proc. 1160, 24 (2009).

    ADS  Google Scholar 

  49. S. G. Popov, Phys. At. Nucl. 62, 256 (1999).

    Google Scholar 

  50. D. M. Nikolenko, H. Arenhovel, J. Arrington, et al., Phys. At. Nucl. 73, 1322 (2010).

    Article  Google Scholar 

  51. V. E. Blinov, A. V. Bogomyagkov, N. Yu. Muchnoi, et al., Nucl. Instrum. Methods Phys. Res. A 598, 23 (2009).

    Article  ADS  Google Scholar 

  52. V. V. Kaminskiy, A. V. Gramolin, S. I. Mishnev, et al., J. Instrum. 9, T06006 (2014).

    Google Scholar 

  53. E. V. Abakumova, M. N. Achasov, V. E. Blinov, et al., Nucl. Instrum. Methods Phys.Res.A 659, 21 (2011).

    Article  ADS  Google Scholar 

  54. http://wwwkph.kph.uni-mainz.de/MAID/

  55. A. V. Gramolin, V. S. Fadin, A. L. Feldman, et al., J. Phys. G 41, 115001 (2014).

    Article  ADS  Google Scholar 

  56. http://www.geant4.org

  57. Yung-Su Tsai, Phys. Rev. 122, 1898 (1961).

    Article  ADS  Google Scholar 

  58. L. W. Mo and Y. S. Tsai, Rev. Mod. Phys. 41, 205 (1969).

    Article  ADS  Google Scholar 

  59. A. J. R. Puckett, arXiv:1008.0855 [nucl-ex].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Nikolenko.

Additional information

Original Russian Text © D.M. Nikolenko, J. Arrington, L.M. Barkov, H. de Vries, V.V. Gauzshtein, R.A. Golovin, A.V. Gramolin, V.F. Dmitriev, V.N. Zhilich, S.A. Zevakov, V.V. Kaminsky, B.A. Lazarenko, S.I. Mishnev, N.Yu. Muchnoi V.V. Neufeld, I.A. Rachek, R.Sh. Sadykov, V.N. Stibunov, D.K. Toporkov, R.J. Holt, Yu.V. Shestakov, 2015, published in Yadernaya Fizika, 2015, Vol. 78, No. 5, pp. 423–433.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolenko, D.M., Arrington, J., Barkov, L.M. et al. Proton form factors and two-photon exchange in elastic electron-proton scattering. Phys. Atom. Nuclei 78, 394–403 (2015). https://doi.org/10.1134/S1063778815020234

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778815020234

Keywords

Navigation