Skip to main content
Log in

Two-Photon Exchange: Myth and History

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

After recalling the arguments for possible excess of two-photon contribution over \(\alpha \)-counting, model independent statements about the consequences on the observables will be given. The relevant experimental data are discussed: (polarized and unpolarized) electron and positron elastic scattering on the proton, as well as annihilation data. A reanalysis of unpolarized electron–proton elastic scattering data is presented in terms of the electric to magnetic form factor squared ratio. This observable is in principle more robust against experimental correlations and global normalizations. The present analysis shows indeed that it is a useful quantity that contains reliable and coherent information. The comparison with the ratio extracted from the measurement of the longitudinal to transverse polarization of the recoil proton in polarized electron–proton scattering shows that the results are compatible. These results bring a decisive piece of information in the controversy on the deviation of the proton form factors from the dipole dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.P. Rekalo, E. Tomasi-Gustafsson, D. Prout, Phys. Rev. C 60, 042202 (1999)

    Article  ADS  Google Scholar 

  2. J. Gunion, L. Stodolsky, Phys. Rev. Lett. 30, 345 (1973)

    Article  ADS  Google Scholar 

  3. V. Boitsov, L. Kondratyuk, V. Kopeliovich, Sov. J. Nucl. Phys. 16, 287 (1973)

    Article  Google Scholar 

  4. V. Franco, Phys. Rev. D 8, 826 (1973)

    Article  ADS  Google Scholar 

  5. F. Lev, Sov. J. Nucl. Phys. 21, 145 (1975)

    Google Scholar 

  6. E. Tomasi-Gustafsson, M. Osipenko, E. Kuraev, Y. Bystritsky, Phys. Atom. Nucl. 76, 937 (2013)

    Article  ADS  Google Scholar 

  7. L.C. Alexa et al., Phys. Rev. Lett. 82, 1374 (1999)

    Article  ADS  Google Scholar 

  8. D. Abbott et al., Phys. Rev. Lett. 82, 1379 (1999)

    Article  ADS  Google Scholar 

  9. P.A. Guichon, M. Vanderhaeghen, Phys. Rev. Lett. 91, 142303 (2003)

    Article  ADS  Google Scholar 

  10. M. Rosenbluth, Phys. Rev. 79, 615 (1950)

    Article  ADS  Google Scholar 

  11. A. Akhiezer, M. Rekalo, Sov. Phys. Dokl. 13, 572 (1968)

    ADS  Google Scholar 

  12. A. Akhiezer, M. Rekalo, Sov. J. Part. Nucl. 4, 277 (1974)

    Google Scholar 

  13. A.J.R. Puckett et al., Phys. Rev. C 96(5), 055203 (2017)

    Article  ADS  Google Scholar 

  14. L. Andivahis, P.E. Bosted, A. Lung, L. Stuart, J. Alster et al., Phys. Rev. D 50, 5491 (1994)

    Article  ADS  Google Scholar 

  15. I. Qattan, J. Arrington, R. Segel, X. Zheng, K. Aniol et al., Phys. Rev. Lett. 94, 142301 (2005)

    Article  ADS  Google Scholar 

  16. M.P. Rekalo, E. Tomasi-Gustafsson, Eur. Phys. J. A 22, 331 (2004)

    Article  ADS  Google Scholar 

  17. M. Rekalo, E. Tomasi-Gustafsson, Nucl. Phys. A 740, 271 (2004)

    Article  ADS  Google Scholar 

  18. M. Rekalo, E. Tomasi-Gustafsson, Nucl. Phys. A 742, 322 (2004)

    Article  ADS  Google Scholar 

  19. G. Gakh, E. Tomasi-Gustafsson, Nucl. Phys. A 761, 120 (2005)

    Article  ADS  Google Scholar 

  20. G. Gakh, E. Tomasi-Gustafsson, Nucl. Phys. A 771, 169 (2006)

    Article  ADS  Google Scholar 

  21. D. Chen, H. Zhou, Y. Dong, Phys. Rev. C 78, 045208 (2008)

    Article  ADS  Google Scholar 

  22. H.Q. Zhou, B.S. Zou, Nucl. Phys. A 883, 49 (2012)

    Article  ADS  Google Scholar 

  23. M. Meziane et al., Phys. Rev. Lett. 106, 132501 (2011)

    Article  ADS  Google Scholar 

  24. V. Punjabi et al., Phys. Rev. C71, 055202 (2005); [Erratum: Phys. Rev. C71, 069902(2005)]

  25. P. Blunden, W. Melnitchouk, J. Tjon, Phys. Rev. C 72, 034612 (2005)

    Article  ADS  Google Scholar 

  26. A.V. Afanasev, S.J. Brodsky, C.E. Carlson, Y.C. Chen, M. Vanderhaeghen, Phys. Rev. D 72, 013008 (2005)

    Article  ADS  Google Scholar 

  27. N. Kivel, M. Vanderhaeghen, Phys. Rev. Lett. 103, 092004 (2009)

    Article  ADS  Google Scholar 

  28. Y. Bystritskiy, E. Kuraev, E. Tomasi-Gustafsson, Phys. Rev. C 75, 015207 (2007)

    Article  ADS  Google Scholar 

  29. G. Gakh, E. Tomasi-Gustafsson, Nucl. Phys. A 838, 50 (2010)

    Article  ADS  Google Scholar 

  30. E. Kuraev, M. Shatnev, E. Tomasi-Gustafsson, Phys. Rev. C 80, 018201 (2009)

    Article  ADS  Google Scholar 

  31. J. Arrington, W. Melnitchouk, J. Tjon, Phys. Rev. C 76, 035205 (2007)

    Article  ADS  Google Scholar 

  32. W. Alberico, S. Bilenky, C. Giunti, K. Graczyk, J. Phys. G36, 115009 (2009)

    Article  ADS  Google Scholar 

  33. D. Borisyuk, A. Kobushkin, Phys. Rev. C 78, 025208 (2008)

    Article  ADS  Google Scholar 

  34. E.A. Kuraev, N.P. Merenkov, V.S. Fadin, Sov. J. Nucl. Phys. 47, 1009 (1988)

    Google Scholar 

  35. E.A. Kuraev, N.P. Merenkov, V.S. Fadin, Yad. Fiz. 47, 1593 (1988)

    Google Scholar 

  36. E.A. Kuraev, V.S. Fadin, Sov. J. Nucl. Phys. 41, 466 (1985)

    Google Scholar 

  37. E.A. Kuraev, V.S. Fadin, Yad. Fiz 41, 733 (1985)

    Google Scholar 

  38. I.A. Rachek et al., Phys. Rev. Lett. 114(6), 062005 (2015)

    Article  ADS  Google Scholar 

  39. D.M. Nikolenko et al., Phys. Atom. Nucl. 78, 394 (2015)

    Article  ADS  Google Scholar 

  40. D.M. Nikolenko et al., Yad. Fiz. 78, 423 (2015)

    Google Scholar 

  41. D. Rimal et al., Phys. Rev. C 95(6), 065201 (2017)

    Article  ADS  Google Scholar 

  42. B.S. Henderson et al., Phys. Rev. Lett. 118(9), 092501 (2017)

    Article  ADS  Google Scholar 

  43. A.V. Gramolin, D.M. Nikolenko, Phys. Rev. C 93(5), 055201 (2016)

    Article  ADS  Google Scholar 

  44. R.E. Gerasimov, V.S. Fadin, Phys. Atom. Nucl. 78(1), 69 (2015)

    Article  ADS  Google Scholar 

  45. E. Tomasi-Gustafsson, Phys. Part. Nucl. Lett. 4, 281 (2007)

    Article  Google Scholar 

  46. S. Pacetti, E. Tomasi-Gustafsson, Phys. Rev. C 94(5), 055202 (2016)

    Article  ADS  Google Scholar 

  47. J. Arrington, Phys. Rev. C 68, 034325 (2003)

    Article  ADS  Google Scholar 

  48. S. Pacetti, R. Baldini Ferroli, E. Tomasi-Gustafsson, Phys. Rep. 550–551, 1 (2015)

    Article  Google Scholar 

  49. J. Litt et al., Phys. Lett. B 31(1), 40 (1970)

    Article  ADS  Google Scholar 

  50. A.J.R. Puckett et al., Phys. Rev. C 85, 045203 (2012)

    Article  ADS  Google Scholar 

  51. R. Walker et al., Phys. Rev. D 49, 5671 (1994)

    Article  ADS  Google Scholar 

  52. R.E. Taylor, in Proceeding of the International Symposium on Electron and Photon Interactions at High Energies, SLAC, 1967 (Stanford Univ., SLAC, 1967), pp. 78–101 (1967)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egle Tomasi-Gustafsson.

Additional information

This article belongs to the Topical Collection “NSTAR 2017 - The International Workshop on the Physics of Excited Nucleons”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomasi-Gustafsson, E., Pacetti, S. Two-Photon Exchange: Myth and History. Few-Body Syst 59, 91 (2018). https://doi.org/10.1007/s00601-018-1416-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-018-1416-5

Navigation