Skip to main content
Log in

The spectrum of CLCN1 gene mutations in patients with nondystrophic Thomsen’s and Becker’s myotonias

  • Human Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Thomsen’s and Becker’s diseases are the most prevalent nondystrophic myotonias. Their frequency varies, according to different sources, from 1: 100000 to 1: 10000. Thomsen’s myotonia is autosomal dominant, and Becker’s myotonia is autosomal recessive. Both diseases result from mutations of the CLCN1 gene encoding chloride ion channels of skeletal muscles. Molecular genetic analysis of the CLCN1 gene has been performed in patients with diagnoses of nondystrophic Thomsen’s and Becker’s myotonias living in the Russian Federation. A sample of 79 unrelated probands with nondystrophic Thomsen’s and Becker’s myotonias and 44 their relatives has been formed in the Laboratory of DNA Diagnosis of the Medical Genetic Research Center of the Russian Academy of Medical Sciences. Forty CLCN1 gene mutations have been found in a total of 118 chromosomes of 66 probands, including 21 familial and 45 sporadic cases. About half the mutations detected (45%) have been found for the first time; they are not described in the SNP database (ncbi.nlm.nih.gov). The following mutations (substitutions) have been detected in more than one chromosome, accounting for a total of 59.3% of chromosomes with mutations: Gly190Ser (5.9%), c.1437_1450del14 (9.3%), Ala493Glu (5.1%), Thr550Met (3.4%), Tyr686Stop (5.1%), and Arg894Stop (30.5%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colding-Jorgensen, E., Phenotypic Variability in Myotonia Congenita, Muscle Nerve, 2005, vol. 32, no. 1, pp. 19–34.

    Article  PubMed  CAS  Google Scholar 

  2. Meyer-Kleine, C., Stenmeyer, K., and Ricker, K., et al., Spectrum of Mutations in the Major Human Skeletal Muscle Chloride Channel Gene (CLCN1) Leading to Myotonia, Am. J. Hum. Genet., 1995, vol. 57, no. 6, pp. 1325–1334.

    PubMed  CAS  Google Scholar 

  3. Fahlke, C., Durr, C., and George, A.L., Mechanism of Ion Permeation in Skeletal Muscle Chloride Channels, J. Gen. Physiol., 1997, vol. 110, no. 5, pp. 551–64.

    Article  PubMed  CAS  Google Scholar 

  4. Dutzler, R., Campbell, E.B., Cadene, M., et al., X-Ray Structure of a ClC Chloride Channel at 3.0 A Reveals the Molecular Basis of Anion Selectivity, Nature, 2002, vol. 415, no. 6869, pp. 287–94.

    Article  PubMed  CAS  Google Scholar 

  5. Abdalla, J.A., Casley, W.L., Cousin, H.K., et al., Linkage of Thomsen Disease to the T-Cell-Receptor Beta (TCRB) Locus on Chromosome 7q35, Am. J. Hum. Genet., 1992, vol. 51, no. 3, pp. 579–84.

    PubMed  CAS  Google Scholar 

  6. Koch, M.C., Steinmeyer, K., Lorenz, C., et al., The Skeletal Muscle Chloride Channel in Dominant and Recessive Human Myotonia, Science, 1992, vol. 257, no. 5071, pp. 797–800.

    Article  PubMed  CAS  Google Scholar 

  7. Sanger, F., Air, G.M., Barrell, B.G., et al., Nucleotide Sequence of Bacteriophage phi X174 DNA, Nature, 1977, vol. 265, no. 5596, pp. 687–695.

    Article  PubMed  CAS  Google Scholar 

  8. de Diego, C., Gamez, J., Plassart-Schiess, E., et al., Novel Mutations in the Muscle Chloride Channel CLCN1 Gene Causing Myotonia Congenita in Spanish Families, J. Neurol., 1999, vol. 246, no. 9, pp. 825–829.

    Article  PubMed  Google Scholar 

  9. Kuo, H.C., Hsiao, K.M., Chang, L.I., et al., Novel Mutations at Carboxyl Terminus of CIC-1 Channel in Myotonia Congenita, Acta Neurol. Scand., 2006, vol. 113, no. 5, pp. 342–346.

    Article  PubMed  CAS  Google Scholar 

  10. Matthews, E., Fialho, D., Tan, S.V., et al., The Non-Dystrophic Myotonias: Molecular Pathogenesis, Diagnosis and Treatment, Brain J. Neurol., 2010, vol. 133, no. 1, pp. 9–22.

    Article  CAS  Google Scholar 

  11. Accardi, A. and Pusch, M., Fast and Slow Gating Relaxations in the Muscle Chloride Channel CLC-1, J. Gen. Physiol., 2000, vol. 116, no. 3, pp. 433–444.

    Article  PubMed  CAS  Google Scholar 

  12. Fialho, D., Schorge, S., Pucovska, U., et al., Chloride Channel Myotonia: Exon 8 Hot-Spot for Dominant-Negative Interactions, Brain J. Neurol., 2007, vol. 130, no. 12, pp. 3265–3274.

    Article  CAS  Google Scholar 

  13. Duffield, M., Rychkov, G., Bretag, A., and Roberts, M., Involvement of Helices at the Dimer Interface in ClC-1 Common Gating, J. Gen. Physiol., 2003, vol. 121, no. 2, pp. 149–161.

    Article  PubMed  CAS  Google Scholar 

  14. Steinmeyer, K., Lorenz, C., Push, M., et al., Multimeric Structure of ClC-1 Chloride Channel Revealed by Mutations in Dominant Myotonia Congenita (Thomsen), EMBO J., 1994, vol. 13, no. 4, pp. 737–743.

    PubMed  CAS  Google Scholar 

  15. Shalata, A., Furman, H., Adir, V., et al., Myotonia Congenita in a Large Consanguineous Arab Family: Insight into the Clinical Spectrum of Carriers and Double Heterozygotes of a Novel Mutation in the Chloride Channel CLCN1 Gene, Muscle Nerve, 2009, vol. 41, no. 4, pp. 464–469.

    Article  Google Scholar 

  16. Sun C., Tranebjaerg L., Torbergsen T. et al., Spectrum of CLCN1 mutations in patients with myotonia congenita in Northern Scandinavia, Eur. J. Hum. Genet., 2001, vol. 9, pp. 903–909.

    Article  PubMed  CAS  Google Scholar 

  17. Trip, J., Drost, G., Verbove, D.J., et al., In Tandem Analysis of CLCN1 and SCN4A Greatly Enhances Mutation Detection in Families with Non-Dystrophic Myotonia, Eur. J. Hum. Genet., 2008, vol. 16, no. 8, pp. 921–929.

    Article  PubMed  CAS  Google Scholar 

  18. George, A.L., Crackower, M.A., Abdalla, J.A., et al., Molecular Basis of Thomsen’s Disease (Autosomal Dominant Myotonia Congenita), Nat. Genet., 1993, vol. 3, no. 4, pp. 305–310.

    Article  PubMed  CAS  Google Scholar 

  19. Koty, P.P., Pergoraro, E., Hobson, G., et al., Myotonia and the Muscle Chloride Channel: Dominant Mutations Show Variable Penetrance and Founder Effect, Neurology, 1996, vol. 47, no. 4, pp. 963–968.

    Article  PubMed  CAS  Google Scholar 

  20. Meyer-Kleine, C., Ricker, K., Otto, M., and Koch, M.C., A Recurrent 14 Bp Deletion in the CLCN1 Gene Associated with Generalized Myotonia (Becker), Hum. Mol. Genet., 1994, vol. 3, no. 6, pp. 1015–1016.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ivanova.

Additional information

Original Russian Text © E.A. Ivanova, E.L. Dadali, V.P. Fedotov, S.A. Kurbatov, G.E. Rudenskaya, T.N. Proskokova, A.V. Polyakov, 2012, published in Genetika, 2012, Vol. 48, No. 9, pp. 1113–1123.

According to the current rules of the nomenclature of mutations in the human genome presented at the Human Genome Variation Society website (http://www.hgvs.org/mutnomen/rec-sport.html; den Dunnen, J.T. and Antonarakis, S.E., Hum. Mutat., 2000, vol. 15, pp. 7–12), the names of all mutations mentioned in this paper that have been described at the protein level should begin with p., e.g., p.Gly190Ser instead of Gly190Ser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanova, E.A., Dadali, E.L., Fedotov, V.P. et al. The spectrum of CLCN1 gene mutations in patients with nondystrophic Thomsen’s and Becker’s myotonias. Russ J Genet 48, 952–961 (2012). https://doi.org/10.1134/S1022795412090049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795412090049

Keywords

Navigation