Skip to main content
Log in

Microstructure evolution of commercial-purity titanium during cryorolling

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Electron backscatter diffraction and transmission electron microscopy have been used to analyze the microstructural evolution of titanium during rolling at a cryogenic temperature (T = −196°C). It has been found that intensive twinning at the cryogenic deformation temperature accelerates the kinetics of microstructure refinement. The quantitative analysis of microstructure evolution in titanium upon cryorolling has shown that structure evolution is mainly related to mechanical twinning in the initial stages. A substructure is developed and deformation-induced high-angle boundaries are formed in the range of mean and high degrees of deformation. It was established that rolling to the total degree of deformation ɛ = 93 % (e = 2.6) at T = −196°C leads to the formation of a titanium microstructure with a grain/subgrains size of approximately 80 nm. The contribution of mechanical twinning and dislocation gliding in structural transformations in titanium with increasing degree of deformation during cryorolling is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metallic Materials: Production, Structure and Properties (Akademkniga, Moscow, 2007) [in Russian].

    Google Scholar 

  2. R. Z. Valiev and T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement,” Prog. Mater. Sci. 51, 881–981 (2006).

    Article  Google Scholar 

  3. A. P. Zhilyaev and T. G. Langdon, “Using high-pressure torsion for metal processing: Fundamentals and applications,” Prog. Mater. Sci. 53, 893–979 (2008).

    Article  Google Scholar 

  4. G. A. Salishchev, S. Yu. Mironov, and S. V. Zherebtsov, “Mechanisms of submicrocrystalline structure formation in titanium and two-phase titanium alloy during warm severe processing,” Rev. Adv. Mater. Sci., No. 11, 152–158 (2006).

    Google Scholar 

  5. Y. Beygelzimer, V. Varyukhin, S. Synkov, and D. Orlov, “Useful properties of twist extrusion,” Mater. Sci. Eng., A 503, 14–17 (2009).

    Article  Google Scholar 

  6. H. Conrad, “Effect of interstitial solutes on the strength and ductility of titanium,” Prog. Mater. Sci. 26, 123–403 (1981).

    Article  Google Scholar 

  7. B. A. Kolachev, Physical Metallurgy of Titanium (Metallurgiya, Moscow, 1976) [in Russian].

    Google Scholar 

  8. Y. B. Chun, S. H. Yu, S. L. Semiatin, and S. K. Hwang, “Effect of deformation twinning on microstructure and texture evolution during cold rolling of CP-titanium,” Mater. Sci. Eng., A 398, 209–219 (2005).

    Article  Google Scholar 

  9. S. V. Zherebtsov, G. S. Dyakonov, A. A. Salem, S. P. Malysheva, G. A. Salishchev, and S. L. Semiatin, “Evolution of grain and subgrain structure during cold rolling of commercial-purity titanium,” Mater. Sci. Eng., A 528, 3474–3479 (2011).

    Article  Google Scholar 

  10. V. A. Moskalenko, A. R. Smirnov, and A. V. Moskalenko, “Cryomechanically obtained nanocrystalline titanium: Microstructure and mechanical properties,” Low Temp. Phys. 35, 905–907 (2009).

    Article  Google Scholar 

  11. E. V. Nesterova and V. V. Rybin, “Mechanical twinning and fragmentation of commercial titanium on the stage of developed plastic deformation,” Fiz. Met. Metalloved. 59, 395–406 (1985).

    Google Scholar 

  12. U. Zwicker, Titan und Titanlegierungen (Springer-Verlag, Berlin, 1977; Metallurgiya, Moscow,1979).

    Google Scholar 

  13. M. G. Glavicic, A. A. Salem, and S. L. Semiatin, “X-ray line-broadening analysis of deformation mechanisms during rolling of commercial-purity titanium,” Acta Mater. 52, 647–655 (2004).

    Article  Google Scholar 

  14. A. A. Pochettino, N. Gannio, C. Vial Edwards, and R. Penelle, “Texture and pyramidal slip in Ti, Zr and their alloys,” Scr. Metall. Mater. 27, 1859–1863 (1992).

    Article  Google Scholar 

  15. M. A. Meyers, O. Vöhringer, and V. A. Lubarda, “The onset of twinning in metals: A constitutive description,” Acta. Mater. 49, 4025–4039 (2001).

    Article  Google Scholar 

  16. P. Hirsh, A. Howie, R. Nicholson, D. Pashley, and M. Whelan, Electron Microscopy of Thin Crystals (Butterworths, Lonson, 1977; Mir, Moscow, 1968).

    Google Scholar 

  17. D. G. Brandon, “The structure of high-angle grain boundaries,” Acta Metall. 14, 1479–1484 (1966).

    Article  Google Scholar 

  18. S. V. Zherebtsov, G. S. Dyakonov, A. A. Salem, V. I. Sokolenko, G. A. Salishchev, and S. L. Semiatin, “Formation of nanostructures in commercial-purity titanium via cryorolling,” Acta Mater. 61, 1167–1178 (2013).

    Article  Google Scholar 

  19. Z. S. Basinski, M. S. Szczerba, M. Niewczas, J. D. Embury, and S. J. Basinski, “The transformation of slip dislocations during twinning of copper-aluminum alloy crystals,” Rev. Metall. 94, 1037–1043 (1997).

    Google Scholar 

  20. G. Salishchev, S. Mironov, S. Zherebtsov, and A. Belyakov, “Changes in misorientations of grain boundaries in titanium during deformation,” Mater. Characterization 61, 732–739 (2010).

    Article  Google Scholar 

  21. N. Stanford, U. Carlson, and M. R. Barnett, “Deformation twinning and the Hall-Petch relation in commercial purity Ti,” Metall. Mater. Trans. A 39, 934–944 (2008).

    Article  Google Scholar 

  22. M. R. Barnett, Z. Keshavarz, A. G. Beer, and D. Atwell, “Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn,” Acta Mater. 52, 5093–5103 (2004).

    Article  Google Scholar 

  23. Qian Yu, Zhi-Wei Shan, Ju Li, X. Huang, Lin Xiao, Jun Sun, and Evan Ma, “Strong crystal size effect on deformation twinning,” Nature 463, 335–338 (2010).

    Article  Google Scholar 

  24. D. A. Molodov, A. V. Ivanov, and G. Gottstein, “Low angle tilt boundary migration coupled to shear deformation,” Acta Mater. 55, 1843–1848 (2007).

    Article  Google Scholar 

  25. M. Winning and A. D. Rollett, “Transition between low and high angle grain boundaries,” Acta Mater. 53, 2901–2907 (2005).

    Article  Google Scholar 

  26. J. W. Cahn and Y. Mishin, “Recrystallization initiated by low-temperature grain boundary motion coupled to stress,” Int. J. Mater. Res. 100, 510–515 (2009).

    Article  Google Scholar 

  27. M. A. Shtremel’, Strength of Alloys. Ch. II. Deformation (MISIS, Moscow, 1997) [in Russian].

    Google Scholar 

  28. F. Humphreys and M. Hatherly, Recrystallization and related annealing phenomena, 2nd ed. (Elsevier, Oxford, 2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. D’yakonov.

Additional information

Original Russian Text © G.S. D’yakonov, S.V. Zherebtsov, M.V. Klimova, G.A. Salishchev, 2015, published in Fizika Metallov i Metallovedenie, 2015, Vol. 116, No. 2, pp. 191–198.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’yakonov, G.S., Zherebtsov, S.V., Klimova, M.V. et al. Microstructure evolution of commercial-purity titanium during cryorolling. Phys. Metals Metallogr. 116, 182–188 (2015). https://doi.org/10.1134/S0031918X14090038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X14090038

Keywords

Navigation