Skip to main content
Log in

Standard model Higgs field and energy scale of gravity

  • Fields, Particles, and Nuclei
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The effective potential of the Higgs scalar field in the Standard Model may have a second degenerate minimum at an ultrahigh vacuum expectation value. This second minimum then determines, by radiative corrections, the values of the top-quark and Higgs-boson masses at the standard minimum corresponding to the electroweak energy scale. An argument is presented that this ultrahigh vacuum expectation value is proportional to the energy scale of gravity, E Planck ≡ √ħc 5/G N, considered to be characteristic of a spacetime foam. In the context of a simple model, the existence of kink-type wormhole solutions places a lower bound on the ultrahigh vacuum expectation value and this lower bound is of the order of E Planck.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Aad et al. (ATLAS Collab.), Phys. Lett. B 716, 1 (2012); arXiv:1207.7214.

    Article  ADS  Google Scholar 

  2. S. Chatrchyan et al. (CMS Collab.), Phys. Lett. B 716, 30 (2012); arXiv:1207.7235.

    Article  ADS  Google Scholar 

  3. C. D. Froggatt and H. B. Nielsen, Phys. Lett. B 368, 96 (1996); arXiv:hep-ph/9511371.

    Article  ADS  Google Scholar 

  4. K. A. Meissner and H. Nicolai, Phys. Lett. B 648, 312 (2007); arXiv:hep-th/0612165.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. M. Shaposhnikov and C. Wetterich, Phys. Lett. B 683, 196 (2010); arXiv:0912.0208.

    Article  ADS  Google Scholar 

  6. M. Holthausen, K. S. Lim, and M. Lindner, J. High Energy Phys. 1202, 037 (2012); arXiv:1112.2415.

    Article  ADS  Google Scholar 

  7. S. R. Coleman and E. J. Weinberg, Phys. Rev. D 7, 1888 (1973).

    Article  ADS  Google Scholar 

  8. M. Sher, Phys. Rep. 179, 273 (1989).

    Article  ADS  Google Scholar 

  9. C. Ford, D. R. T. Jones, P. W. Stephenson, and M. B. Einhorn, Nucl. Phys. B 395, 17 (1993); arXiv:hep-lat/9210033.

    Article  ADS  Google Scholar 

  10. K. G. Chetyrkin and M. F. Zoller, J. High Energy Phys. 1206, 033 (2012); arXiv:1205.2892.

    Article  ADS  Google Scholar 

  11. F. Bezrukov, M. Y. Kalmykov, B. A. Kniehl, and M. Shaposhnikov, J. High Energy Phys. 1210, 140 (2012); arXiv:1205.2893.

    Article  ADS  Google Scholar 

  12. G. Degrassi, S. Di Vita, J. Elias-Miro, et al., J. High Energy Phys. 1208, 098 (2012); arXiv:1205.6497.

    Article  ADS  Google Scholar 

  13. M. Visser, Lorentzian Wormholes: From Einstein to Hawking (Springer, New York, 1995).

    Google Scholar 

  14. S. V. Sushkov and S. W. Kim, Class. Quantum Grav. 19, 4909 (2002); arXiv:gr-qc/0208069.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. F. R. Klinkhamer, Mod. Phys. Lett. A 28, 1350010 (2013); arXiv:1112.2669.

    Article  ADS  Google Scholar 

  16. F. R. Klinkhamer and P. Olesen, Nucl. Phys. B 422, 227 (1994); arXiv:hep-ph/9402207.

    Article  ADS  Google Scholar 

  17. S. Bernadotte and F. R. Klinkhamer, Phys. Rev. D 75, 024028 (2007); arXiv:hep-ph/0610216.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. R. Klinkhamer.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klinkhamer, F.R. Standard model Higgs field and energy scale of gravity. Jetp Lett. 97, 297–300 (2013). https://doi.org/10.1134/S002136401306009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136401306009X

Keywords

Navigation