Skip to main content
Log in

On the Interplay of Magnetic and Molecular Forces in Curie–Weiss Ferrofluid Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a mean-field continuum model of classical particles in R d with Ising or Heisenberg spins. The interaction has two ingredients, a ferromagnetic spin coupling and a spin-independent molecular force. We show that a feedback between these forces gives rise to a first-order phase transition with simultaneous jumps of particle density and magnetization per particle, either at the threshold of ferromagnetic order or within the ferromagnetic region. If the direct particle interaction alone already implies a phase transition, then the additional spin coupling leads to an even richer phase diagram containing triple (or higher order) points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. Angelescu and V. A. Zagrebnov, A generalized quasiaverage approach to the description of the limit states of the n-vector Curie-Weiss ferromagnet, J. Stat. Phys. 41:323–334 (1985).

    Google Scholar 

  2. P. Ballone, Ph. de Smedt, J. L. Lebowitz, J. Talbot, and E. Waisman, Computer simulation of a classical fluid with internal quantum states, Phys. Rev. A 35:942–944 (1987).

    Google Scholar 

  3. T. Burke, J. L. Lebowitz, and E. Lieb, Phase transition in a model quantum system: Quantum corrections to the location of the critical point, Phys. Rev. 149:118–122 (1966).

    Google Scholar 

  4. L. Chayes, S. B. Sholsman, and V. A. Zagrebnov, Discontinuity of the magnetization in diluted O(n)-model. Preprint (CPT, Luminy, Marseille, 1998).

    Google Scholar 

  5. I. Csiszár, Sanov property, generalized I-projection and a conditional limit theorem, Ann. Prob. 12:768–798 (1984).

    Google Scholar 

  6. D. J. Gates and O. Penrose, The van der Waals limit for classical systems. I: A variational principle, Commun. Math. Phys. 15:255–276 (1969).

    Google Scholar 

  7. P. G. de Gennes, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1974).

    Google Scholar 

  8. H. O. Georgii, Gibbs Measures and Phase Transitions, De Gruyter Studies in Mathematics, Vol. 9 (de Gruyter, Berlin, 1988).

    Google Scholar 

  9. H. O. Georgii and O. Häggström, Phase transition in continuum Potts models, Commun. Math. Phys. 181:507–528 (1996).

    Google Scholar 

  10. H. O. Georgii and H. Zessin, Large deviations and the maximum entropy principle for marked point random fields, Probab. Theory Relat. Fields 96:177–204 (1993).

    Google Scholar 

  11. B. Groh and S. Dietrich, Spatial structure of dipolar ferromagnetic liquids, Phys. Rev. Lett. 79:749–752 (1997).

    Google Scholar 

  12. Ch. Gruber and R. B. Griffiths, Phase transition in a ferromagnetic fluid, Physica A 138:220–230 (1986).

    Google Scholar 

  13. P. C. Hemmer and D. Imbro, Ferromagnetic fluids, Phys. Rev. A 16:380–386 (1977).

    Google Scholar 

  14. K. Johansson, On separation of phases in one-dimensional gases, Commun. Math. Phys. 169:521–561 (1995).

    Google Scholar 

  15. J. L. Lebowitz and O. Penrose, Rigorous treatment of the Van der Waals Maxwell theory of the liquid vapour transition, J. Math. Phys. 7:98–113 (1966).

    Google Scholar 

  16. J. L. Lebowitz, A. E. Mazel, and E. Presutti, Liquid-vapor phase transitions for systems with finite range interactions, J. Stat. Phys. (to appear, 1998).

  17. E. Lieb, Quantum-mechanical extension of the Lebowitz-Penrose theorem on the Van der Waals theory. J. Math. Phys. 7:1016–1024 (1966).

    Google Scholar 

  18. E. Lomba, J.-J. Weis, N. G. Almarza, F. Bresme, and G. Stell, Phase transitions in a continuum model of the classical Heisenberg magnet: The ferromagnetic system, Phys. Rev. E 49:5169–5178 (1994).

    Google Scholar 

  19. D. C. Mattis, The Theory of Magnetism (Harper & Row, New York, 1965).

    Google Scholar 

  20. S. A. Pikin, Structural Transformations in Liquid Crystals (in Russian) (Moscow, Nauka, 1981).

  21. R. T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, N.J., 1970).

    Google Scholar 

  22. D. Ruelle, Existence of a phase transition in a continuous classical system, Phys. Rev. Lett. 27:1040–1041 (1971).

    Google Scholar 

  23. B. Simon, The Statistical Mechanics of Lattice Gases, Vol. 1 (Princeton University Press, Princeton, N.J., 1993).

    Google Scholar 

  24. K. Sano and M. Doi, Theory of agglomeration of ferromagnetic particles in magnetic fluids, J. Phys. Soc. Japan 52:2810–2815 (1983).

    Google Scholar 

  25. Ph. de Smedt, P. Nielaba, J. L. Lebowitz, J. Talbot, and L. Dooms, Static and dynamic correlations in fluids with internal quantum states: Computer simulations and theory, Phys. Rev. A 38:1381–1394 (1988).

    Google Scholar 

  26. M. J. Stevens and G. S. Grest, Structure of soft-sphere dipolar fluids, Phys. Rev. E 51:5962–5975 (1995).

    Google Scholar 

  27. M. J. Stevens and G. S. Grest, Phase coexistence of a Stockmayer fluid in an applied field, Phys. Rev. E 51:5976–5983 (1995).

    Google Scholar 

  28. J.-J. Weis, M. J. P. Nijmeijer, J. M. Taveres, and M. M. Telo de Gama, Phase diagram of Sleisenberg fluids: Computer simulation and density functional theory, Phys. Rev. E 51:5962–5975 (1997).

    Google Scholar 

  29. B. Widom and J. S. Rowlinson, New model for the study of liquid-vapor phase transition, J. Chem. Phys. 52:1670–1684 (1970).

    Google Scholar 

  30. V. A. Zagrebnov, Long-range order in a lattice-gas model of nematic liquid crystals, Physica A 232:737–746 (1996).

    Google Scholar 

  31. H. Zhang and M. Widom, Global phase diagrams for dipolar fluids, Phys. Rev. E 49:R3591–R3593 (1994).

    Google Scholar 

  32. Zhu Yun, E. Haddadian, T. Mou, M. Gross, and Jing Liu, Rôle of nucleation in the structure evolution of a magnetorheological fluid, Phys. Rev. E 53:1753–1759 (1996).

    Google Scholar 

  33. A. Yu. Zubarev and A. O. Ivanov, Kinetics of a magnetic fluid phase separation induced by an external magnetic field, Phys. Rev. E 55:7192–7202 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgii, HO., Zagrebnov, V. On the Interplay of Magnetic and Molecular Forces in Curie–Weiss Ferrofluid Models. Journal of Statistical Physics 93, 79–107 (1998). https://doi.org/10.1023/B:JOSS.0000026728.01594.18

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000026728.01594.18

Navigation