Skip to main content
Log in

Spinors, Inflation, and Non-Singular Cyclic Cosmologies

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We consider toy cosmological models in which a classical, homogeneous, spinor field provides a dominant or sub-dominant contribution to the energy-momentum tensor of a flat Friedmann-Robertson-Walker universe. We find that, if such a field were to exist, appropriate choices of the spinor self-interaction would generate a rich variety of behaviors, quite different from their widely studied scalar field counterparts. We first discuss solutions that incorporate a stage of cosmic inflation and estimate the primordial spectrum of density perturbations seeded during such a stage. Inflation driven by a spinor field turns out to be unappealing as it leads to a blue spectrum of perturbations and requires considerable fine-tuning of parameters. We next find that, for simple, quartic spinor self-interactions, non-singular cyclic cosmologies exist with reasonable parameter choices. These solutions might eventually be incorporated into a successful past- and future-eternal cosmological model free of singularities. In an Appendix, we discuss the classical treatment of spinors and argue that certain quantum systems might be approximated in terms of such fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Linde, A. (1990). Inflationary Cosmology and Particle Physics, Harwood, Chur, Switzerland.

    Google Scholar 

  2. Taub, A. (1937). Phys. Rev. 51, 512.

    Google Scholar 

  3. Brill, D., and Wheeler, J. (1957). Rev. Mod. Phys. 29, 465.

    Google Scholar 

  4. Parker, L. (1971). Phys. Rev. D 3, 346.

    Google Scholar 

  5. Isham, C., and Nelson, J. (1974). Phys. Rev. D 10, 3226.

    Google Scholar 

  6. Christodoulakis, T., and Zanelli, J. (1984). Phys. Rev. D 29, 2738.

    Google Scholar 

  7. Kovalyov, M., and Legare, M. (1990). J. Math. Phys. 31, 191.

    Google Scholar 

  8. Saha, B., and Shikin, G. (2001). (gr-qc/0102059)

  9. Saha, B., and Shikin, G. (1997). J. Math. Phys. 38, 5305(gr-qc/9609055)

    Google Scholar 

  10. Saha, B., and Shikin, G. (1997). Gen. Relat. Grav. 29, 1099(gr-qc/9609056).

    Google Scholar 

  11. Weinberg, S. (1972). Gravitation and Cosmology, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  12. Birrell, N., and Davies, P. (1982). Quantum Fields in Curved Space, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  13. Green, M., Schwarz, J., and Witten, E. (1987). Superstring Theory, Vol. 2, Cambridge University Press, Chap. 12.

  14. Carroll, S. (1998). Phys. Rev. Lett. 81, 3067(astro-ph/9806099).

    Google Scholar 

  15. Damour, T., and Polyakov, A. (1994). Nucl. Phys. B 423, 532(hep-th/9401069).

    Google Scholar 

  16. Sievers, J., et al. (astro-ph/0205387).

  17. Wald, R. (1984). General Relativity, The University of Chicago Press, Chicago, IL.

    Google Scholar 

  18. Armendariz-Picon, C., Damour, T., and Mukhanov, V. (1999). Phys. Lett. B 458, 209(hep-th/9904075)

    Google Scholar 

  19. Armendariz-Picon, C., Mukhanov, V., and Steinhardt, P. (2001). Phys. Rev. D 63, 103510(astro-ph/0006373)

    Google Scholar 

  20. Armendariz-Picon, C. (2002). Phys. Rev. D. 65, 104010(gr-qc/0201027).

    Google Scholar 

  21. Hollands, S., and Wald, R. (2002). Gen. Relat. Grav. 34, 2043(gr-qc/0205058)

    Google Scholar 

  22. Kofman, L., Linde, A., and Mukhanov, V. (hep-th/0206088)

  23. Hollands, S., and Wald, R. (hep-th/0210001).

  24. Ford, L. (1989). Phys. Rev. D 40, 967.

    Google Scholar 

  25. Obukhov, Y. (1993). Phys. Lett. A 182, 214(gr-qc/0008015).

    Google Scholar 

  26. Kofman, L., Linde, A., and Starobinsky, A. (1997). Phys. Rev. D 56, 3258(hep-ph/9704452).

    Google Scholar 

  27. Greene, P. B., and Kofman, L. (1999). Phys. Lett. B 448, 6(hep-ph/9807339).

    Google Scholar 

  28. Damour, T., and Vilenkin, A. (1996). Phys. Rev. D 53, 2981(hep-th/9503149).

    Google Scholar 

  29. Felder, G., Kofman, L., and Linde, A. (1999). Phys. Rev. D 60, 103505(hep-ph/9903350).

    Google Scholar 

  30. Mukhanov, V., Feldman, H., and Brandenberger, R. (1992). Phys. Rep. 215, 204.

    Google Scholar 

  31. Peshkin, M., and Schroeder, D. (1995). An Introduction to Quantum Field Theory, Perseus Books.

  32. Abramowitz, M., and Stegun, I. (1965). Handbook of Mathematical Functions, Dover Publications, New York.

    Google Scholar 

  33. Mollerach, S. (1990). Phys. Rev. D 42, 313

    Google Scholar 

  34. Linde, A., and Mukhanov, V. (1997). Phys. Rev. D 56, 535(astro-ph/9610219)

    Google Scholar 

  35. Moroi, T., and Takahashi, T. (2001). Phys. Lett. B 522, 215(hep-ph/0110096).

    Google Scholar 

  36. Lyth, D., and Wands, D. (2002). Phys. Lett. B 524, 5(hep-ph/0110002).

    Google Scholar 

  37. Tolman, R. (1934). Relativity, Thermodynamics and Cosmology, Clarendon Press, Oxford.

    Google Scholar 

  38. Barrow, J., and Dabrowski, M. (1995). Mon. Not. R. Astron. 275, 860.

    Google Scholar 

  39. Steinhardt, P., and Turok, N. (2002). Phys. Rev. D 65, 126003(hep-th/0111098).

    Google Scholar 

  40. Felder, G. N., Frolov, A. V., Kofman, L., and Linde, A. V. (2002). Phys. Rev. D 66, 023507(hep-th/0202017).

    Google Scholar 

  41. Mukherji, S., and Peloso, M. (hep-th/0205180)

  42. Myung, Y. (hep-th/0208086).

  43. Hatfield, B. (1992). Quantum Field Theory of Point Particles and Strings, Addison-Wesley, Reading, MA.

    Google Scholar 

  44. Bardeen, J., Cooper, L., and Schrieffer, J. (1957). Phys. Rev. 108, 1175.

    Google Scholar 

  45. Nambu, Y., and Jona-Lasinio, G. (1961). Phys. Rev. 122, 345.

    Google Scholar 

  46. Gross, D., and Neveu, A. (1974). Phys. Rev. D 10, 3235.

    Google Scholar 

  47. Hill, C., and Salopek, D. (1992). Annals Phys. 213, 21.

    Google Scholar 

  48. Chimento, L., Jalcubi, A., and Pensa, F. (1990). Class. Quantum Grav. 7, 1561.

    Google Scholar 

  49. Kanekar, N., Sahni, V., and Shtanov, Y. (2001). Phys. Rev. D 63, 083520.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armendáriz-Picón, C., Greene, P.B. Spinors, Inflation, and Non-Singular Cyclic Cosmologies. General Relativity and Gravitation 35, 1637–1658 (2003). https://doi.org/10.1023/A:1025783118888

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025783118888

Navigation