Skip to main content
Log in

Simulation Study of Aspects of the Classical Hydrogen Atom Interacting with Electromagnetic Radiation: Circular Orbits

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The present study examines the behavior of a classical charged point particle orbiting an infinitely massive and oppositely charged nucleus, while acted upon by circularly polarized electromagnetic plane waves. This system is intended to represent a classical model of a hydrogen atom interacting with radiation. Despite the simplicity of the system, very nonlinear behavior result, making a numerical study of the system nearly essential. The results should be of interest to researchers studying the classical behavior of Rydberg-like atoms. The numerical results naturally suggest a number of experiments that could be done involving the novel control of chemical reactions and of excited atomic states. Moreover, and perhaps more immediately, the present article has close ties and implications regarding the behavior of the classical hydrogen atomic model within the domain of the theory called stochastic electrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Clark, W., and Greene, C. H. (1999). Adventures of a rydberg electron in an anisotropic world. Rev. Mod. Phys. 71, 821–833.

    Google Scholar 

  2. Braun, P. A. (1993). Discrete semiclassical methods in the theory of rydberg atoms in external fields. Rev. Mod. Phys. 65, 115–161.

    Google Scholar 

  3. Griffiths, J. A., and Farrelly, D. (1992). Ionization of rydberg atoms by circularly and elliptically polarized microwave fields. Phys. Rev. A 45(5), R2678–R2681.

    Google Scholar 

  4. Grochmalicki, J., Lewenstein, M., and Rzazewski, K. (1991). Stabilization of atoms in superintense laser fields: Is it real? Phys. Rev. Lett. 66(8), 1038–1041.

    Google Scholar 

  5. Wesdorp, C., Robicheaux, F., and Noordam, L. D. (2001). Displacing rydberg electrons: The mono-cycle nature of half-cycle pulses. Phys. Rev. Lett. 87(8), 083001.

    Google Scholar 

  6. Yoshida, S., Reinhold, C. O., Kristofel, P., and Burgdorfer, J. (2000). Exponential and nonexponential localization of the one-dimensional periodically kicked rydberg atom. Phys. Rev. A 62, 023408.

    Google Scholar 

  7. Rockwell, G. N., Hoffman, V. F., Clausen, Th., and Blumel, R. (2002). Realistic three-dimensional computations of microwave-ionization curves of hydrogen rydberg atoms. Phys. Rev. A 65, 025401.

    Google Scholar 

  8. Koch, P. M., and van Leeuwen, K. A. H. (1995). The importance of resonances in microwave “ionization” of excited hydrogen atoms. Phys. Rep. 255, 289–403.

    Google Scholar 

  9. Leopold, J. G., and Percival, I. C. (1978). Microwave ionization and excitation of Rydberg atoms. Phys. Rev. Lett. 41(14), 944–947.

    Google Scholar 

  10. Noel, M. W., Griffith, W. M., and Gallagher, T. F. (2000). Classical subharmonic resonances in microwave ionization of lithium Rydberg atoms. Phys. Rev. A 62, 063401.

    Google Scholar 

  11. Gallagher, T. F., Hill, R. M., and Edelstein, S. A. (1978). Method and apparatus for field ionization for isotope separation. US Patent No. 4,070,580; see: www.uspto.gov, pp. 1–7.

  12. Bir, R., and Schermann, J. P. (1982). Method of isotope separation. US Patent No. 4,360,501; see: www.uspto.gov, pp. 1–6.

  13. Oomori, T., Ono, K., and Fujita, S. (1990). Ion current generator system for thin film formation, ion implantation, etching and sputtering. US Patent No. 4,893,019; see: www.uspto.gov, pp. 1–43.

  14. Oomori, T., and Ono, K. (1992). Ion source. US Patent No. 5,115,135; see: www.uspto. gov, pp. 1–75.

  15. Noordam, L. D., and Lankhuijzen, M. D. (2000). Apparatus for detecting a photon pulse. US Patent No. 6,049,079; see: www.uspto.gov, pp. 1–9.

  16. Cole, D. C. (1993). Reviewing and Extending Some Recent Work on Stochastic Electrodynamics, pp. 501–532, World Scientific, Singapore.

    Google Scholar 

  17. de la Pena, L., and Cetto, A. M. (1996). The Quantum Dice-An Introduction to Stochastic Electrodynamics. Kluwer Academic Publishers, Kluwer Dordrecht.

    Google Scholar 

  18. Boyer, T. H. (1975). Random electrodynamics: The theory of classical electrodynamics with classical electromagnetic zero-point radiation. Phys. Rev. D 11(4), 790–808.

    Google Scholar 

  19. Boyer, T. H. (1985). The classical vacuum. Sci. American 253, 70–78.

    Google Scholar 

  20. Cole, D. C. (1990). Derivation of the classical electromagnetic zero-point radiation spectrum via a classical thermodynamic operation involving van der waals forces. Phys. Rev. A 42, 1847–1862.

    Google Scholar 

  21. Marshall, T. W. (1963). Random electrodynamics. Proc. R. Soc. London, Ser. A 276, 475–491.

    Google Scholar 

  22. Marshall, T. W. (1965). Statistical electrodynamics. Proc. Camb. Phil. Soc. 61, 537–546.

    Google Scholar 

  23. Boyer, T. H. (1969). Derivation of the blackbody radiation spectrum without quantum assumptions. Phys. Rev. 182, 1374–1383.

    Google Scholar 

  24. Boyer, T. H. (1969). Classical statistical thermodynamics and electromagnetic zero-point radiation. Phys. Rev. 186, 1304–1318.

    Google Scholar 

  25. Cole, D. C., and Rueda, A. (1996). The quantum dice: An introduction to stochastic electrodynamics. Found. Phys. 26, 1559–1562.

    Google Scholar 

  26. Cole, D. C. (1992). Reinvestigation of the thermodynamics of blackbody radiation via classical physics. Phys. Rev. A 45, 8471–8489.

    Google Scholar 

  27. Cole, D. C. (2000). Thermodynamics of blackbody radiation via classical physics for arbitrarily shaped cavities with perfectly conducting walls. Found. Phys. 30(11), 1849–1867.

    Google Scholar 

  28. Franca, H. M., and Marshall, T. W. (1988). Excited states in stochastic electrodynamics. Phys. Rev. A 38(7), 3258–3263.

    Google Scholar 

  29. Boyer, T. H. (1980). Thermal effects of acceleration through random classical radiation. Phys. Rev. D 21(8), 2137–2148.

    Google Scholar 

  30. Boyer, T. H. (1984). Thermal effects of acceleration for a classical dipole oscillator in classical electromagnetic zero-point radiation. Phys. Rev. D 29(6), 1089–1095.

    Google Scholar 

  31. Cole, D. C. (1985). Properties of a classical charged harmonic oscillator accelerated through classical electromagnetic zero-point radiation. Phys. Rev. D 31(8), 1972–1981.

    Google Scholar 

  32. Cole, D. C. (1987). Thermal effects of acceleration for a spatially extended electromagnetic system in classical electromagnetic zero-point radiation: Transversely positioned classical oscillators. Phys. Rev. D 35, 562–583.

    Google Scholar 

  33. Boyer, T. H. (1975). General connection between random electrodynamics and quantum electrodynamics for free electromagnetic fields and for dipole oscillator systems. Phys. Rev. D 11(4), 809–830.

    Google Scholar 

  34. Boyer, T. H. (1976). Equilibrium of random classical electromagnetic radiation in the presence of a nonrelativistic nonlinear electric dipole oscillator. Phys. Rev. D 13(10), 2832–2845.

    Google Scholar 

  35. Boyer, T. H. (1978). Statistical equilibrium of nonrelativistic multiply periodic classical systems and random classical electromagnetic radiation. Phys. Rev. A 18, 1228–1237.

    Google Scholar 

  36. Blanco, R., Pesquera, L., and Santos, E. (1983). Equilibrium between radiation and matter for classical relativistic multiperiodic systems. derivation of Maxwell–Boltzmann distribution from Rayleigh-Jeans spectrum. Phys. Rev. D (Particles and Fields) 27(6), 1254–87.

    Google Scholar 

  37. Blanco, R., Pesquera, L., and Santos, E. (1984). Equilibrium between radiation and matter for classical relativistic multiperiodic systems. ii. study of radiative equilibrium with Rayleigh-Jeans radiation. Phys. Rev. D (Particles and Fields) 29(10), 2240–54.

    Google Scholar 

  38. Marshall, T. W., and Claverie, P. (1980). Stochastic electrodynamics of nonlinear systems. I. Particle in a central field of force. J. Math. Phys. 21(7), 1819–25.

    Google Scholar 

  39. Claverie, P., Pesquera, L., and Soto, F. (1980). Existence of a constant stationary solution for the hydrogen atom problem in stochastic electrodynamics. Phys. Lett. A 80(2/3), 113–16.

    Google Scholar 

  40. Denis, A., Pesquera, L., and Claverie, P. (1981). Linear response of stochastic multiperiodic systems in stationary states with application to stochastic electrodynamics. Physica A 109(1/2), 178–92.

    Google Scholar 

  41. Claverie, P., and Soto, F. (1982). Nonrecurrence of the stochastic process for the hydrogen atom problem in stochastic electrodynamics. J. Math. Phys. 23(5), 753–9.

    Google Scholar 

  42. Cole, D. C. (1990). Entropy and other thermodynamic properties of classical electromagnetic thermal radiation. Phys. Rev. A 42, 7006–7024.

    Google Scholar 

  43. Boyer, T. H (1989). Scaling symmetry and thermodynamic equilibrium for classical electromagnetic radiation. Found. Phys. 19, 1371–1383.

    Google Scholar 

  44. Cole, D. C. (1990). Classical electrodynamic systems interacting with classical electromagnetic random radiation. Found. Phys. 20, 225–240.

    Google Scholar 

  45. Dirac, P. A. M. (1938). Classical theory of radiating electrons. Proc. R. Soc. London Ser. A 167, 148–169.

    Google Scholar 

  46. Teitelboim, C. (1970). Splitting of the maxwell tensor: Radiation reaction without advanced fields. Phys. Rev. D 1(6), 1572–1582.

    Google Scholar 

  47. Teitelboim, C., Villarroel, D., and van Weert, Ch. G. (1980). Classical electrodynamics of retarded fields and point particles. Riv. del Nuovo Cimento 3(9), 1–64.

    Google Scholar 

  48. Rohrlich, F. (1965). Classical Charged Particles, Addison-Wesley, MA.

    Google Scholar 

  49. Hockney, R. W., and Eastwood, J. W. (1988). Computer Simulation Using Particles. McGraw-Hill, New York.

    Google Scholar 

  50. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, New York, 2nd edn.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, D.C., Zou, Y. Simulation Study of Aspects of the Classical Hydrogen Atom Interacting with Electromagnetic Radiation: Circular Orbits. Journal of Scientific Computing 20, 43–68 (2004). https://doi.org/10.1023/A:1025846412872

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025846412872

Navigation