Skip to main content
Log in

Subharmonic resonance and critical eccentricity for the classical hydrogen atomic system

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Subharmonic resonance behaviors are investigated for the classical hydrogen atom, with classical radiation damping and circularly polarized light acting on the classical electron. This study is intended for both potential experimental applications as well as for deeper theoretical purposes. Long resonant states are predicted for realistic Rydberg atoms and highly excited hydrogen states. Several previously undiscovered physical effects are predicted. First, the semimajor axis remains relatively constant when in subharmonic resonance; second, the eccentricity steadily increases until a maximum, critical value is reached, at which point orbital decay sets in. If the initial orbit is circular, this critical eccentricity value is shown to always be the same for each subharmonic condition, regardless of the initial orbital radius. An analytic derivation for this result is presented. The illustrated dynamics are of interest for the classical theory of stochastic electrodynamics (SED) regarding whether SED can fundamentally describe more of quantum phenomena, particularly atomic excited state behavior and related emission and absorption spectra. Also of interest are how classical resonances can be imposed on a near continuum of quantum states. Finally, there may be future technological applications, such as “reading” and “writing” information into Rydberg atoms in the form of subharmonic resonances.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Cole, Y. Zou, J. Sci. Comput. 39, 1 (2009)

    Article  MathSciNet  Google Scholar 

  2. D.C. Cole, Y. Zou, J. Sci. Comput. 20, 43 (2004)

    Article  MathSciNet  Google Scholar 

  3. D.C. Cole, Y. Zou, J. Sci. Comput. 20, 379 (2004)

    Article  MathSciNet  Google Scholar 

  4. D.C. Cole, Y. Zou, J. Sci. Comput. 21, 145 (2004)

    Article  MathSciNet  Google Scholar 

  5. D.C. Cole, Y. Zou, Phys. Rev. E 69, 016601 (2004)

    Article  ADS  Google Scholar 

  6. D.C. Cole, Y. Zou, Phys. Lett. A 317, 14 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  7. M.W. Noel, W.M. Griffith, T.F. Gallagher, Phys. Rev. A 62, 063401 (2000)

    Article  ADS  Google Scholar 

  8. T.H. Boyer, Phys. Rev. D 11, 809 (1975)

    Article  ADS  Google Scholar 

  9. D.C. Cole, Reviewing and extending some recent work on stochastic electrodynamics, inEssays on the Formal Aspects of Electromagnetic Theory, edited by A. Lakhtakia (World Scientific, Singapore, 1993), pp. 501–532

  10. L. de la Peña, A.M. Cetto,The Quantum Dice – An Introduction to Stochastic Electrodynamics (Kluwer Acad. Publishers, Kluwer Dordrecht, 1996)

  11. T.W. Marshall, Statistical electrodynamics, in Proceedings of the Cambridge Philosophical Society (1965), Vol. 61, pp. 537–546

  12. T.H. Boyer, Phys. Rev. 182, 1374 (1969)

    Article  ADS  Google Scholar 

  13. D.C. Cole, Phys. Rev. A 42, 1847 (1990)

    Article  ADS  Google Scholar 

  14. T.H. Boyer, Phys. Rev. D 21, 2137 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  15. T.H. Boyer, Phys. Rev. D 29, 1089 (1984)

    Article  ADS  Google Scholar 

  16. D.C. Cole, Phys. Rev. D 31, 1972 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  17. D.C. Cole, Phys. Rev. D 35, 562 (1987)

    Article  ADS  Google Scholar 

  18. T.H. Boyer, Phys. Rev. A 11, 1650 (1975)

    Article  ADS  Google Scholar 

  19. D.C. Cole, Phys. Rev. D 33, 2903 (1986)

    Article  ADS  Google Scholar 

  20. D.C. Cole, Phys. Rev. A 42, 7006 (1990)

    Article  ADS  Google Scholar 

  21. D.C. Cole, Phys. Rev. A 45, 8471 (1992)

    Article  ADS  Google Scholar 

  22. T.W. Marshall, Proc. R. Soc. Lond., Ser. A 276, 475 (1963)

    Article  ADS  Google Scholar 

  23. T.H. Boyer, Phys. Rev. A 21, 66 (1980)

    Article  ADS  Google Scholar 

  24. T.H. Boyer, Phys. Rev. D 11, 790 (1975)

    Article  ADS  Google Scholar 

  25. T.M. Nieuwenhuizen, M.T.P. Liska, Physica Scripta 2015, 014006 (2015)

    Article  Google Scholar 

  26. T.M. Nieuwenhuizen, M.T.P. Liska, Found. Phys. 45, 1190 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  27. T.M. Nieuwenhuizen, Entropy 18, 135 (2016)

    Article  ADS  Google Scholar 

  28. T.H. Boyer, Found. Phys. 46, 880 (2016)

    Article  ADS  Google Scholar 

  29. P.M. Koch, K.A.H. van Leeuwen, Phys. Rep. 255, 289 (1995)

    Article  ADS  Google Scholar 

  30. H. Maeda, D.V.L. Norum, T.F. Gallagher, Science 307, 1757 (2005)

    Article  ADS  Google Scholar 

  31. C. Teitelboim, D. Villarroel, Ch.G. van Weert, Riv. del Nuovo Cimento 3, 1 (1980)

    Article  Google Scholar 

  32. J.D. Jackson,Classical Electrodynamics, 2nd edn. (John Wiley & Sons, USA, 1975)

  33. G.N. Plass, Rev. Mod. Phys. 33, 37 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  34. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery,Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. (Cambridge University Press, New York, 1992)

  35. H. Goldstein,Classical Mechanics, 2nd edn. (Addison-Wesley, Reading, MA, 1981)

  36. T.L. Chow,Classical Mechanics (John Wiley & Sons Inc., New York, 1995)

  37. R.A. Becker,Introduction to Theoretical Mechanics (McGraw-Hill, New York, 1954)

  38. J.S. Rigden,Hydrogen: The Essential Element (Harvard University Press, Cambridge, Massachusetts, 2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel C. Cole.

Additional information

Supplementary material in the form of one PDF file available from the Journal web page at https://doi.org/10.1140/epjd/e2018-90137-4

Electronic supplementary material

Supplementary data

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cole, D.C. Subharmonic resonance and critical eccentricity for the classical hydrogen atomic system. Eur. Phys. J. D 72, 200 (2018). https://doi.org/10.1140/epjd/e2018-90137-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90137-4

Keywords

Navigation