Skip to main content
Log in

Simulating Retention in Gas–Liquid Chromatography: Benzene, Toluene, and Xylene Solutes

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Accurate predictions of retention times, retention indices, and partition constants are a long sought-after goal for theoretical studies in chromatography. Although advances in computational chemistry have improved our understanding of molecular interactions, little attention has been focused on chromatography, let alone calculations of retention properties. Configurational-bias Monte Carlo simulations in the isobaric–isothermal Gibbs ensemble were used to investigate the partitioning of benzene, toluene, and the three xylene isomers between a squalane liquid phase and a helium vapor phase. The united-atom representation of the TraPPE (transferable potentials for phase equilibria) force field was used for all solutes and squalane. The Gibbs free energies of transfer and Kovats retention indices of the solutes were calculated directly from the partition constants (which were averaged over several independent simulations). While the calculated Kovats indices of benzene and toluene at T=403 K are significantly higher than their experimental counterparts, much better agreement is found for the xylene isomers at T=365 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. L. Karger, L. R. Snyder, and C. Eon, Anal. Chem. 50:2126 (1978).

    Google Scholar 

  2. W. R. Melander and C. Horváth, in High-Performance Liquid Chromatography: Advances and Perspectives, Vol. 2, C. Horváth, ed. (Academic Press, London, 1980), p. 113.

    Google Scholar 

  3. D. E. Martire and R. E. Boehm, J. Phys. Chem. 87:1045 (1983).

    Google Scholar 

  4. R. Kaliszan, Quantitative Structure-Chromatographic Retention Relationships, Chemical Analysis, Vol. 93 (Wiley-Interscience, New York, 1987).

    Google Scholar 

  5. C. H. Lochmüller, C. Reese, A. J. Aschman, and S. J. Breiner, J. Chromatogr. A 656:3 (1993).

    Google Scholar 

  6. M. G. Martin, J. I. Siepmann, and M. R. Schure, J. Phys. Chem. B 103:11191 (1999).

    Google Scholar 

  7. D. A. Tourres, J. Chromatogr. 30:357 (1967).

    Google Scholar 

  8. L. Rohrschneider, J. Chromatogr. 22:6 (1966).

    Google Scholar 

  9. W. O. McReynolds, J. Chromatogr. Sci. 8:685 (1970).

    Google Scholar 

  10. M. G. Martin and J. I. Siepmann, J. Phys. Chem. B 102:2569 (1988).

    Google Scholar 

  11. M. G. Martin and J. I. Siepmann, J. Phys. Chem. B 103:4508 (1999).

    Google Scholar 

  12. B. Chen and J. I. Siepmann, J. Phys. Chem. B 103:5370 (1999).

    Google Scholar 

  13. B. Chen, J. Xing, and J. I. Siepmann, J. Phys. Chem. B 104:2391 (2000).

    Google Scholar 

  14. C. D. Wick, M. G. Martin, and J. I. Siepmann, J. Phys. Chem. B 104:8008 (2000).

    Google Scholar 

  15. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987).

    Google Scholar 

  16. W. D. Cornell, P. Cieplak, C. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. 117:5179 (1995).

    Google Scholar 

  17. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118:11225 (1996).

    Google Scholar 

  18. A. Ben-Naim, Statistical Thermodynamics for Chemists and Biochemists (Plenum Press, New York, 1992).

    Google Scholar 

  19. J. C. Giddings, Unified Separation Science (Wiley, New York, 1991).

    Google Scholar 

  20. M. R. Schure, in Advances in Chromatography, Vol. 39, P. R. Brown and E. Grushka, eds. (Marcel Dekker, New York, 1998), p. 139.

    Google Scholar 

  21. D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic Press, New York, 1996).

    Google Scholar 

  22. J. P. Valleau, J. Chem. Phys. 99:4718 (1993).

    Google Scholar 

  23. S. K. Kumar, I. Szleifer, and A. Z. Panagiotopoulos, Phys. Rev. Lett. 66:2935 (1991).

    Google Scholar 

  24. D. A. Kofke, J. Chem. Phys. 98:4149 (1993).

    Google Scholar 

  25. N. B. Wilding, Phys. Rev. E 52:602 (1995).

    Google Scholar 

  26. F. A. Escobedo and J. J. de Pablo, J. Chem. Phys. 106:2911 (1997).

    Google Scholar 

  27. T. Spyriouni, I. G. Economou, and D. N. Theodorou, Phys. Rev. Lett. 80:4466 (1998).

    Google Scholar 

  28. A. Z. Panagiotopoulos, Mol. Phys. 61:813 (1987).

    Google Scholar 

  29. A. Z. Panagiotopoulos, N. Quirke, M. Stapleton, and D. J. Tildesley, Mol. Phys. 63:527 (1988).

    Google Scholar 

  30. B. Smit, P. de Smedt, and D. Frenkel, Mol. Phys. 68:931 (1989).

    Google Scholar 

  31. J. I. Siepmann, Mol. Phys. 70:1145 (1990).

    Google Scholar 

  32. J. I. Siepmann and D. Frenkel, Mol. Phys. 75:59 (1992).

    Google Scholar 

  33. D. Frenkel, G. C. A. M. Mooij, and B. Smit, J. Phys. Cond. Matt. 4:3053 (1992).

    Google Scholar 

  34. J. J. de Pablo, M. Laso, and U. W. Suter, J. Chem. Phys. 96:2395 (1992).

    Google Scholar 

  35. G. C. A. M. Mooij, D. Frenkel, and B. Smit, J. Phys. Cond. Matt. 4:L255 (1992).

    Google Scholar 

  36. M. Laso, J. J. Pablo, and U. W. Suter, J. Chem. Phys. 97:2817 (1992).

    Google Scholar 

  37. M. G. Martin and J. I. Siepmann, J. Am. Chem. Soc. 119:8921 (1997).

    Google Scholar 

  38. M. G. Martin and J. I. Siepmann, Theor. Chem. Acc. 99:347 (1998).

    Google Scholar 

  39. B. Chen and J. I. Siepmann, J. Am. Chem. Soc. 122:6464 (2000).

    Google Scholar 

  40. B. D. Smith and R. Srivastava, Thermodynamic Data for Pure Compounds: Part A. Hydrocarbons and Ketones (Elsevier, Amsterdam, 1986).

    Google Scholar 

  41. M. V. Budahegyi, E. R. Lombosi, T. S. Lombosi, S. Y. Mészáros, Sz. Nyiredy, G. Tarján, I. Timár, and J. M. Takács, J. Chromatogr. 271:213 (1983).

    Google Scholar 

  42. E. Kovats, Helv. Chim. Acta 41:1915 (1958).

    Google Scholar 

  43. E. Kovats, in Advances in Chromatography, Vol. 1 (Marcel Dekker, New York, 1965), p. 229.

    Google Scholar 

  44. J. Krupcik, O. Liska, and L. Sojak, J. Chromatogr. 51:119 (1970).

    Google Scholar 

  45. L. E. Cook and F. M. Raushel, J. Chromatogr. 65:556 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wick, C.D., Martin, M.G., Siepmann, J.I. et al. Simulating Retention in Gas–Liquid Chromatography: Benzene, Toluene, and Xylene Solutes. International Journal of Thermophysics 22, 111–122 (2001). https://doi.org/10.1023/A:1006788915299

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006788915299

Navigation