Skip to main content
Log in

A simple classification of the volvocine algae by formal languages

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

There are several explanations of why certain primitive multicellular organisms aggregate in particular forms and why their constituent cells cooperate with one another to a particular degree. Utilizing the framework of formal language theory, we have derived one possible simple classification of the volvocine algae—one of the primitive multicells—for some forms of aggregation and some degrees of cooperation among cells. The volvocine algae range from the unicellular Chlamydomonas to themulticellular Volvox globator, which has thousands of cells. The classification we use in this paper is based on the complexity of Parikh sets of families on Chomsky hierarchy in formal language theory. We show that an alga with almost no space closed to the environment, e.g., Gonium pectorale, can be characterized by \(Ps\mathcal{F}\mathcal{I}\mathcal{N}\), one with a closed space and no cooperation, e.g., Eudorina elegans, by \(Ps\mathcal{C}\mathcal{F}\), and one with a closed space and cooperation, e.g., Volvox globator, by \(Ps\lambda u\mathcal{S}\mathcal{C}\). This classification should provide new insights into the necessity for specific forms and degrees of cooperation in the volvocine algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berry, G., Boudol, G., 1992. The chemical abstract machine. Theoret. Comput. Sci. 96, 217–248.

    Article  MathSciNet  MATH  Google Scholar 

  • Dassow, J., 1980. On parikh-languages of L systems without interaction. Rostock. Math. Kolloq. 15, 103–110.

    MATH  MathSciNet  Google Scholar 

  • Dassow, J., Paun, G., 1989. Regulated Rewriting in Formal Language Theory. Springer-Verlag, Berlin.

    Google Scholar 

  • Dassow, J., Paun, G., 1998. On the power of membrane computing. TUCS Technical Report 217, Turku Centre for Computer Science (See also http://www.tucs.fi/).

  • Dassow, J., Paun, G., Salomaa, A., 1997. Grammars with Controlled Derivations. In: Handbook of Formal Languages, vol. 2. Springer-Verlag, pp. 101–154 (Chapter 3).

    MathSciNet  Google Scholar 

  • Goldstein, M., 1964. Speciation and mating behavior in Eudorina. J. Protozool. 11(3), 317–344.

    Google Scholar 

  • Green, K.J., Kirk, D.L., 1981. Cleavage patterns, cell lineages, and development of a cytoplasmic bridge system in Volvox embryos. J. Cell Biol. 91, 743–755.

    Article  Google Scholar 

  • Green, K.J., Viamontes, G.I., Kirk, D.L., 1981. Mechanism of formation, ultrastructure, and function of the cytoplasmic bridge system during morphogenesis in Volvox. J. Cell Biol. 91, 756–769.

    Article  Google Scholar 

  • Janssen, J., Lindenmayer, A., 1987. Models for the control of branch positions and flowering sequences of capitula in Mycelis Muralis (L.) Dumont (Compsitae). New Phytol. 105, 191–220.

    Article  Google Scholar 

  • Kirk, D.L., 1990. Genetic control of reproductive cell differentiation in Volvox. In: Wiessner, W., Robinson, D., Starr, R. (Eds.), Experimental Phycology 1: Cell Walls and Surfaces. Springer-Verlag, pp. 81–94.

  • Kirk, D.L., 1999. Evolution of multicellularity in the volvocine algae. Curr. Opin. Plant Biol. 2, 496–501.

    Article  Google Scholar 

  • Kirk, D.L., Birchem, R., King, N., 1986. The extracellular matrix of Volvox: A comparative study and proposed system of nomenclature. J. Cell Sci. 80, 207–231.

    Google Scholar 

  • Kirk, D.L., Kaufman, M.R., Keeling, R.M., Stamer, K.A., 1991. Genetic and cytological control of the asymmetric divisions that pattern the Volvox embryo. Dev. Suppl. 1, 67–82.

    Google Scholar 

  • Lindenmayer, A., 1968a. Mathematical models for cellular interactions in development. I. filaments with onesided inputs. J. Theor. Biol. 18(3), 280–299.

    Article  Google Scholar 

  • Lindenmayer, A., 1968b. Mathematical models for cellular interactions in development. II. simple and branching filaments with two-sided inputs. J. Theor. Biol. 18(3), 300–315.

    Article  Google Scholar 

  • Michod, R., Roze, D., 1999. Cooperation and conflict in the evolution of individuality. III. transitions in the unit of fitness. In: Nehaniv, C. (Ed.), Mathematical and Computational Biology. In: Computational Morphogenesis, Hierarchical Complexity, and Digital Evolution, vol. 26. American Mathematical Society, Providence, RI, pp. 47–92.

    Google Scholar 

  • Michod, R.E., 1996. Cooperation and conflict in the evolution of individuality. II. conflict mediation. Proc. R. Soc. Lond. B 263, 813–822.

    Google Scholar 

  • Michod, R.E., Roze, D., 2001. Cooperation and conflict in the evolution of multicellularity. Heredity 86, 1–7.

    Article  Google Scholar 

  • Miller, S.M., Kirk, D.L., 1999. glsA, a Volvox gene required for asymmetric division and germ cell specification, encodes a chaperone-like protein. Development 126, 649–658.

    Google Scholar 

  • Nozaki, H., 1990. Ultrastructure of the extracellular matrix of Gonium (Volvocales, Chlorophyta). Phycologia 29(1), 1–8.

    Google Scholar 

  • Nozaki, H., Kuroiwa, T., 1992. Ultrastructure of the extracellular matrix and taxonomy of Eudorina, Pleodorina and Yamagishiella gen. nov. (Volvocaceae, Chlorophyta). Phycologia 31(6), 529–541.

    Google Scholar 

  • Paun, G., 2002. Membrane computing: An introduction. In: Natural Computing. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Pickett-Heaps, J., 1975. Green Algae: Structure, Reproduction and Evolution in Selected Genera. Sinauer Associate.

  • Prusinkiewicz, P., Hanan, J., 1989. Lindenmayer Systems, Fractals, and Plants. Springer-Verlag.

  • Rosen, R., 1967. Optimality Principles in Biology. Butterworths.

  • Starr, R., 1968. Cellular differentiation in Volvox. Proc. Natl. Acad. Sci. USA 59(4), 1082–1088.

    Article  Google Scholar 

  • Sumper, M., Hallmann, A., 1998. Biochemistry of the extracellular matrix of Volvox. Int. Rev. Cyt. 180, 51–85.

    Article  Google Scholar 

  • Woessner, J., Goodenough, U.W., 1994. Volvocine cell walls and their constituent glycoproteins: an evolutionary perspective. Protoplasma 181, 245–258.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, H., Yokomori, T. & Suyama, A. A simple classification of the volvocine algae by formal languages. Bull. Math. Biol. 67, 1339–1354 (2005). https://doi.org/10.1016/j.bulm.2005.03.001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2005.03.001

Keywords

Navigation