Skip to main content

Advertisement

Log in

Simple stochastic fingerprints towards mathematical modelling in biology and medicine. 1. The treatment of coccidiosis

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We have developed a classification function that is capable of discriminating between anticoccidial and nonanticoccidial compounds with different structural patterns. For this purpose, we calculated the Markovian electron delocalization negentropies of several compounds. These molecular descriptors, which act as molecular fingerprints, are derived from an electronegativity-weighted stochastic matrix (1Π). The method attempts to describe the delocalization of electrons with time during the process of molecule formation by considering the 3D environment of the atoms. Accordingly, the entropies of this random process are used as molecular descriptors. The present study involves a stochastic generalization of the original idea described by Kier, which concerned the use of molecular negentropies in QSAR. Linear discriminant analysis allowed us to fit the discriminant function. This function has given rise to a good classification of 82.35% (28 anticoccidials out of 34) and 91.8% of inactive compounds (56/61) in training series. An overall classification of 88.42% (84/95) was achieved. Validation of the model was carried out by means of an external predicting series and this gave a global predictability of 93.1%. Finally, we report the experimental assay (more than 95% of lesion control) of two compounds selected from a large data set through virtual screening. We conclude that the approach described here seems to be a promising 3D-QSAR tool based on the mathematical theory of stochastic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aires-de-Sousa, J. and J. Gasteiger (2002). Prediction of enantiomeric selectivity in chromatography. Application of conformation-dependentand conformation-independent descriptors of molecular chirality. J. Mol. Graph Model. 20, 373–388.

    Article  Google Scholar 

  • Benigni, R., M. Cotta-Ramusino, G. Gallo, F. Giorgi, A. Giuliani and M. R. Vari (2000). Deriving a quantitative chirality measure for molecular similarity indices. J. Med. Chem. 43, 63699–63703.

    Google Scholar 

  • Bharucha-Reid, A. T. (1960). Elements of Theory of Markov Process on the Application, McGraw-Hill Series in Probability and Statistic, New York: McGraw-Hill Book Company, pp. 167–434.

    Google Scholar 

  • Bonchev, D. and N. Trinjastic (1977). Information theory, distance matrix and molecular branching. J. Chem. 67, 4517–4533.

    Google Scholar 

  • Burden, R. F., G. M. Ford, C. D. Whitley and A. D. Winkler (2000). Use of automatic relevance determination in QSAR studies using Bayesian neural networks. J. Chem. Inf. Comput. Sci. 40, 1423–1430.

    Article  Google Scholar 

  • Cabrera, M. A., D. H. González, T. C. Fernádez, M. J. Plá-Delfina and S. M. Bermejo (2002). A novel approach to determine physicochemical and absorption properties of 6-fluoroquinolone derivatives: experimental assessment. Eur. J. Pharm. Biopharm. 53, 317–325.

    Article  Google Scholar 

  • Chapman, H. D. (1998). Evaluation of the efficacy of anticoccidial drugs against Eimeria species in the fowl. Int. J. Paras. 28, 1141–1144.

    Article  MathSciNet  Google Scholar 

  • Cramer, R. D. III, D. Paterson and J. Bunce (1988). Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 110, 5959–5967.

    Article  Google Scholar 

  • Daunes, S., C. D’Silva, H. Kendrickm, V. Yardley and S. L. Croft (2001). QSAR study on the contribution of log P and E(s). to the in vitro antiprotozoal activity of glutathione derivatives. J. Med. Chem. 44, 2976–2983.

    Article  Google Scholar 

  • Davis, P. J. and J. F. Reynolds (1986). 4552759 composition for the control of coccidiosis in poultry. Biotechnol. Adv. 4, 375–376.

    Article  Google Scholar 

  • Davis, P. J. and J. F. Reynolds (1988). 4752475 compositions for the control of coccidiosis in poultry. Biotechnol. Adv. 6, 814.

    Article  Google Scholar 

  • Divo, A. A., C. L. Sartorelli, C. L. Patton and F. J. Bia (1988). Activity of fluoroquinolone antibiotics against Plasmodium falciparum in vitro. Atimicrob. Agents Chemother. 32, 1182–1186.

    Google Scholar 

  • Duszynski, D. W. and S. J. Upton (2001). Enteric protozoans: Cyclospora, Eimeria, Isospora and Cryptosporidium (Cryptosporidiidae) spp, in Parasitic Diseases of Wild Mammals, 2nd edn, W. M. Samuel, M. J. Pybus and A. A. Kocan (Eds), Ames, IA: Iowa State University Press, pp. 416–459 (Chapter 16).

    Google Scholar 

  • Eliel, E., S. Wilen and L. Mander (1994). Stereo Chemistry of Organic Compounds, John Wiley and Sons Inc., pp. 103–112.

  • Espinosa, G., A. Arenas and F. Giralt (2002). An integrated SOM-Fuzzy ARTMAP neural system for the evaluation of toxicity. J. Chem. Inf. Comput. Sci. 42, 343–359.

    Article  Google Scholar 

  • Estrada, E. and E. Uriarte (2001a). Recent advances on the role of topological indices in drug design discovery research. Curr. Med. Chem. 8, 1573–1588.

    Google Scholar 

  • Estrada, E. and E. Uriarte (2001b). Quantitative structure-toxicity relationships using TOPS-MODE. 1. Nitrobenzene toxicity to tetrahymena pyriformis. SAR QSAR Environ. Res. 12, 309–324.

    Google Scholar 

  • Estrada, E., E. Molina and E. Uriarte (2001a). Quantitative structure-toxicity relationships using TOPS-MODE. 2. Neurotoxicity of a noncongeneric series of solvents. SAR QSAR Environ. Res. 12, 445–459.

    Google Scholar 

  • Estrada, E., I. Perdomo and J. Torres-Labandeira (2001b). Combination of 2D-, 3D-connectivity and quantum chemical descriptors in QSPR. Complexation of α-and β-Cyclodextrin with benzene derivatives. J. Chem. Inf. Comput. Sci. 41, 1561–1568.

    Article  Google Scholar 

  • Freund, J. A. and T. Poschel (Eds), (2000). Stochastic processes in physics, chemistry, and biology, in: Lecture Notes in Physics, Berlin: Springer.

    Google Scholar 

  • Gálvez, J. and R. García (1994). Diseño de fármacos por conectividad molecular, in Diseño de Medicamentos, A. Mosquiera (Ed.), Madrid: Farmaindustria, pp. 355–384.

    Google Scholar 

  • Gnedenko, B. (1978). The Theory of Probability, Moscow: Mir Publishers, pp. 107–112.

    Google Scholar 

  • Golbraikh, A. and A. Tropsha (2003). QSAR modeling using chirality descriptors derived from molecular topology. J. Chem. Inf. Comput. Sci. 43, 144–154.

    Article  Google Scholar 

  • Golbraikh, A., D. Bonchev and A. Tropsha (2001). Novel chirality descriptors derive from molecular topology. J. Chem. Inf. Comput. Sci. 41, 147–158.

    Article  Google Scholar 

  • González, D. H., E. Olazábal, N. Castañedo, S. I. Hernádez, A. Morales, H. S. Serrano, J. González and R. Ramos de A. (2002a). Markovian chemicals ‘in silico’ design (MARCH-INSIDE), a promising approach for computer aided molecular design II: experimental and theoretical assessment of a novel method for virtual screening of fasciolicides. J. Mol. Mod. 8, 237–245.

    Article  Google Scholar 

  • González, D. H., R. R. De Armas and E. Uriarte (2002b). In silico Markovian bioinformatics for predicting 1Ha-NMR chemical shifts in mouse epidermis growth factor (mEGF). Online J. Bioinformatics 1, 83–95.

    Google Scholar 

  • González, D. H., S. I. Hernández, E. Uriarte and L. Santana (2003a). Symmetry considerations in Markovian chemicals ‘in silico’ design (MARCH-INSIDE). I: central chirality codification, classification of ACE inhibitors and prediction of σ-receptor antagonist activities. Comput. Biol. Chem. 27, 217–227.

    Article  Google Scholar 

  • González, D. H. et al. (2003b). 3D-MEDNEs: an alternative ‘in silico’ technique for chemical research in toxicology. 1. Prediction of chemically induced agranulocytosis. Chem. Res. Tox. 16, 1318–1327.

    Article  Google Scholar 

  • González, D. H., O. Gia, E. Uriarte et al. (2003c). Markovian chemicals ‘in silico’ design (MARCH-INSIDE), a promising approach for computer-aided molecular design I: discovery of anticancer compounds. J. Mol. Mod. 9, 395–407.

    Article  Google Scholar 

  • González, D. H., R. Ramos de A. and R. Molina (2003d). Vibrational Markovian modelling of footprints after the interaction of antibiotics with the packaging region of HIV Type 1. Bull. Math. Biol. 65, 991–1002.

    Article  Google Scholar 

  • González, D. H., R. Ramos de A. and R. Molina (2003e). Markovian negentropies in bioinformatics. 1. A picture of footprints after the interaction of the HIV-1 Ψ-RNA packaging region with drugs. Bioinformatics 19, 2079–2087.

    Article  Google Scholar 

  • Gonzalbes, R., J. Gálvez, R. García-Domenech and F. Derouin (1999). Molecular search of new drugs against toxoplasma gondii. SAR QSAR Environ. Res. 10, 47–60.

    Google Scholar 

  • Gonzalbes, R., M. Brun-Pascaud, R. Garcia-Domenech, J. Galvez, P-M. J-P. Girard, Doucet and F. Derouin (2000). Anti-toxoplasma activities of 24 quinolones and fluoroquinolones in vitro: prediction of activity by molecular topology and virtual computational techniques. Antimicrob. Agents Chemother 44, 2771–2776.

    Article  Google Scholar 

  • Graham, D. J. (2002). Information and organic molecules: structure considerations via integer statistics. J. Chem. Inf. Comput. Sci. 42, 215–221.

    Article  Google Scholar 

  • Guzman, V. B., D. A. Silva, U. Kawazoe and J. R. Mineo (2003). A comparison between IgG antibodies against Eimeria acervulina, E. maxima, and E. tenella and oocyst shedding in broiler-breeders vaccinated with live anticoccidial vaccines. Vaccine 21, 4225–4233.

    Article  Google Scholar 

  • Hardman, G. J. and E. I. Lee (Eds), (1996). Goodman and Gilman’s, The Pharmacological Basis of Therapeutics, 9th edn, McGraw-Hill.

  • Hernández, I. and H. González (2002). MARCH-INSIDE version 1.0 (Markovian Chemicals ‘In Silico’ Design). Chemicals Bio-actives Center, Central University of ‘Las Villas’, Cuba. This is a preliminary experimental version, a future professional version shall be available to the public. For any information about it, sends and e-mail to the corresponding author humbertogd@vodafone.es or humbertogd@cbq.uclv.edu.cu.

    Google Scholar 

  • Johnson, J. and W. M. Reid (1970). Anticoccidial drugs: lesion-scoring techniques in battery and floor-pen experiments with chickens. Exp. Parasitol. 28, 30–36.

    Article  Google Scholar 

  • Julián-Ortiz, J. V., C. de Gregorio Alapont, I. Ríos-Santamaria, R. García-Domenech and J. Gálvez (1998). J. Mol. Graphics Mod. 16, 14–18.

    Article  Google Scholar 

  • Katritzky, A. R. and B. T. Douglas (2001). Theoretical descriptors for the correlation of aquatic toxicity of environmental pollutants by quantitative structure-toxicity relationships. J. Chem. Inf. Comput. Sci. 41, 1162–1176.

    Article  Google Scholar 

  • Kharazmi, A., S. B. Christensen and N. S. Feldbaek (1999). Preparation of biologically active chalcones, dihydrochalcones, and analogs thereof. PCT Int. Appl. WO 9900114 A2 19990107CAN 130:95384 AN 1999:34839.

    Google Scholar 

  • Kier, L. B. (1980). Use of molecular negentropy to encode structure governing biological activity. J. Pharm. Sci. 69, 807.

    Google Scholar 

  • Kier, L. B. and L. H. Hall (1999). Molecular Structure Description. The Electrotopological State, New York: Academic Press.

    Google Scholar 

  • Kier, L. B. and L. H. Hall (1981). Derivation and significance of valence molecular connectivity. J. Pharm. Sci. 70, 583–589.

    Google Scholar 

  • Kleeman, A., J. Engel, B. Kutscher and D. Reichert (2001). Pharmaceutical Substances 4th, Stuttgart: George Thieme Verlag.

    Google Scholar 

  • Kowalski, R. B. and S. Wold (1982). Pattern recognition in chemistry, in Handbook of Statistics, P. R. Krishnaiah and L. N. Kanal (Eds), Amsterdam: North Holland Publishing Company, pp. 673–697.

    Google Scholar 

  • Kubinyi, H., J. Taylor and C. Ramdsen (1990). Quantitative drug design, C. Hansch (Ed.), in Comprehensive Medicinal Chemistry, Vol. 4, Pergamon, pp. 589–643.

  • Kutarov, V. V. and B. M. Kats (1993). Use of information-theory indices for description of the heats of adsorption of halomethanes on graphitized carbon black. Zh. Fiz. Khim. 67, 199–200.

    Google Scholar 

  • Landau, L. D. and E. M. Lifshitz (1963). Mecánica quántica no-relativista, in Curso de Física Teórica, v3, Barcelona: Reverté, pp. 1–49.

    Google Scholar 

  • La-Scalea, M. A., C. M. Chin, M. L. Cruz, S. H. Serrano and E. I. Ferreira (2001). Dissociation and electrooxidation of primaquine diphosphate as an approach to the study of anti-chagas prodrugs mechanism of action. Bioelectrchemistry 53, 55–59.

    Article  Google Scholar 

  • Lukovits, I. W. (2001). Linert a topological account of chirality. J. Chem. Inf. Comput. Sci. 41, 1517–1520.

    Article  Google Scholar 

  • Mansfield, M. L. and D. G. Covell (2002). A new class of molecular shape descriptors. 1. Theory and properties. J. Chem. Inf. Comput. Sci. 42, 259–273.

    Article  Google Scholar 

  • Mc Farland, J. W. (1992). Comparative molecular field analysis of anticoccidial triazines. J. Med. Chem. 35, 2543.

    Article  Google Scholar 

  • Mc Farland, J. W., C. B. Cooper and D. M. Newcomb (1991). Linear discriminant and multiple regression analyses of anticoccidial triazines. J. Med. Chem. 34, 1908.

    Article  Google Scholar 

  • Milne, G. W. A., M. C. Nicklaus and S. Wang (1998). Pharmacophores in drug design and discovery. SAR QSAR Environ. Res. 9, 23–38.

    Google Scholar 

  • Montanari, C. A., M. S. Tute, A. E. Beezer and J. C. Mitchell (1996). Determination of receptor-bound drug conformations by QSAR using flexible fitting to derive a molecular similarity index. J. Comput. Aided Mol. Des. 10, 67–73.

    Article  Google Scholar 

  • Negwer, M. (1987). Organic Chemical Drugs and their Synonyms, Berlin: Akademie-Verlag.

    Google Scholar 

  • Ooms, F., S. Jegham, P. George, F. Durant and J. Wouters (2000). Molecular interaction between reversible MAO-A inhibitors and the enzyme. Neurobiology 8, 81–98.

    Google Scholar 

  • Pauling, L. (1939). The Nature of Chemical Bond, Ithaca, New York: Cornell University Press, pp. 2–60.

    Google Scholar 

  • Pérez, G. M., D. H. González, R. R. Molina, M. A. Cabrera and R. R. de Armas (2003). TOPS-MODE based QSARs derived from heterogeneous series of compounds. Applications to the deign of New Herbicides. J. Chem. Inf. Comput. Sci. 43, 1192–1199.

    Article  Google Scholar 

  • Randičc, M. (1991a). Correlation of enthalpy of octanes with orthogonal connectivity indices. J. Mol. Struct. (TEOCHEM) 233, 45–59.

    Article  Google Scholar 

  • Randič, M. (1991b). Orthogonal molecular descriptors. New. J. Chem. 15, 517–525.

    Google Scholar 

  • Randič, M. (1991c). Resolution of ambiguities in quantitative structure-property studies by use of orthogonal descriptors. J. Chem. Inf. Comput. Sci. 31, 311–320.

    Article  Google Scholar 

  • Randič, M. (1993). Fitting of nonlinear regression by orthogonalized power series. J. Comput. Chem. 14, 363–370.

    Article  Google Scholar 

  • Rhyu, K. B., H. C. Patel and A. J. Hopfinger (1995). A 3D-QSAR study of anticoccidial triazines using molecular shape analysis. J. Chem. Inf. Comput. Sci. 35, 771–778.

    Article  Google Scholar 

  • Ricketts, A. P. and E. R. Pfefferkorn (1993). Toxoplasma gondii: susceptibility and development of resistance to anticoccidial drugs in vitro. Antimicrob Agents Chemother. 37, 2358–2363.

    Google Scholar 

  • Samarandra, K. R., P. Pyare, N. Indranil, V. Ramadoss, V. S. M. Musti, S. Subramaniam, A. Vemula, R. Kuppuswamy and R. Narayanan (1998). ’Resultant bond moment’ as a newly developed electronic parameter in the design of antibacterial, antiprotozoal nitromidazole derivatives. Arzneimittel-Forschung 48, 286–290.

    Google Scholar 

  • Shannon, C. E. (1955). The Mathematical Theory of Communication, Urbana: University of Illinois Press.

    Google Scholar 

  • STATISTICA (2001). Version. 6.0, Statsoft, Inc.

  • Todeschini, R. and V. Consonni (2000). Handbook of Molecular Descriptors, Weinheim, Germany: Wiley VCH.

    Google Scholar 

  • Van Waterbeemd, H. (1995). Discriminant analysis for activity prediction, R. Manhnhold, Krogsgaard-Larsen and H. Timmerman (Eds), in Method and Principles in Medicinal Chemistry, Vol. 2, pp. 265–282. Chemometric methods in molecular design Ed: H. Van Waterbeemd, VCH, Weinhiem.

    Google Scholar 

  • Von Rague, S. P. (1998). Encyclopedia of Computational Chemistry, USA, NY: Wiley.

    Google Scholar 

  • Wang, S., G. W. A. Milne and G. Klopman (1994). Graph theory and group contributions in the estimation of boiling points. J. Chem. Inf. Comput. Sci. 34, 1242–1250.

    Article  Google Scholar 

  • Wilson, E. D. (1992). The Diversity of Life, Cambridge: Harvard University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto González Díaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz, H.G., Bastida, I., Castañedo, N. et al. Simple stochastic fingerprints towards mathematical modelling in biology and medicine. 1. The treatment of coccidiosis. Bull. Math. Biol. 66, 1285–1311 (2004). https://doi.org/10.1016/j.bulm.2003.12.003

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2003.12.003

Keywords

Navigation