Skip to main content
Log in

Double-jump migration and diffusive instability

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In order to look into the stability consequences of a particular migration process in which individuals choose to settle, we formulated a continuous-time multi-species multi-patch model in which individuals migrate by one or two instantaneous jumps while making the second jump with a certain probability that possibly depends on the conditions at the end point of the first jump. It turned out that a second jump has some quantitative effects on diffusive instability even when it occurs in the absence of density-dependent mechanisms. When a second jump happens as a natural interspecific response of individuals, and such a response is sufficiently strong, it has crucial effects on diffusive instability: it leads to diffusive instability in the case of competitive interactions, whereas it annihilates diffusive instability in the case of prey-predator interactions. We demonstrated these results in the context of two specific examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aronson, D. G. (1985). The role of diffusion in mathematical population biology: Skellam revisited, In Mathematics in Biology and Medicine, V. Capasso, (Ed.), Lecture Notes in Biomathematics 57, pp 2–6.

  • Diekmann, O. (1978). Thresholds and traveling waves for the geographical spread of infection. J. Math. Biol. 6, 109–130.

    MATH  MathSciNet  Google Scholar 

  • Diekmann, O. (1979). Run for your life: a note on the asymptotic speed of propagation of an epidemic. J. Differ. Equ. 33, 58–73.

    Article  MATH  MathSciNet  Google Scholar 

  • Holt, R. D. (1984). Spatial heterogeneity, indirect interaction, and the coexistence of prey species. Am. Nat. 124, 377–406.

    Article  Google Scholar 

  • Holt, R. D. (1985). Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution. Theor. Popul. Biol. 28, 181–208.

    Article  MATH  MathSciNet  Google Scholar 

  • Huang, Y. and O. Diekmann (2001). Predator migration in response to prey density: what are the consequences?. J. Math. Biol. 43, 561–581.

    Article  MathSciNet  Google Scholar 

  • Huang, Y. and O. Diekmann (2003). Interspecific influence on mobility and Turing instability. Bull. Math. Biol. 46, 143–156.

    Article  Google Scholar 

  • Jansen, V. A. A. and A. L. Lloyd (2000). Local stability analysis of spatially homogeneous solutions of multi-patch systems. J. Math. Biol. 41, 232–252.

    Article  MathSciNet  Google Scholar 

  • Karevia, P. and P. Odell (1987). Swarms of predators exhibit preytaxis if individual predators use area restricted search. Am. Nat. 130, 233–270.

    Article  Google Scholar 

  • Kot, M. (1992). Discrete time travelling waves: ecological examples. J. Math. Biol. 30, 413–436.

    Article  MATH  MathSciNet  Google Scholar 

  • Levin, S. A. and L. A. Segel (1976). Hypothesis for origin of planktonic patchiness. Nature 259, 659.

    Article  Google Scholar 

  • Lewis, M. A. and S. W. Pacala (2000). Modeling and analysis of stochastic invasion processes. J. Math. Biol. 41, 387–429.

    Article  MathSciNet  Google Scholar 

  • Mollison, D. (1977). Spatial contact models for ecological and epidemic spread. J. R. Stat. Soc. B 39, 283–326.

    MATH  MathSciNet  Google Scholar 

  • Neubert, M. G., P. Klepac and P. van den Driessche (2002). Stabilizing dispersal delays in predato-prey metapopulation models. Theor. Popul. Biol. 61, 339–347.

    Article  Google Scholar 

  • Neubert, M. G., M. Kot and M. A. Lewis (1995). Dispersal and pattern formation in a discrete-time predator-prey model. Theor. Popul. Biol. 48, 7–43.

    Article  Google Scholar 

  • Okubo, A. (1980). Diffusion and Ecological Problems: Mathematical Models, Berlin: Springer.

    Google Scholar 

  • Okubo, A. and S. A. Levin (2001). Diffusion and Ecological Problems: Modern Perspectives, 2nd edn, Berlin: Spinger.

    Google Scholar 

  • Ortega, J. (1987). Matrix Theory, New York, London: Plenum Press.

    Google Scholar 

  • Othmer, H. G., S. R. Dunbar and W. Alt (1988). Models of dispersal in biological systems. J. Math. Biol. 26, 263–298.

    Article  MathSciNet  Google Scholar 

  • Othmer, H. G. and L. E. Scriven (1971). Instability and dynamic patterns in cellular networks. J. Theor. Biol. 32, 507–537.

    Article  Google Scholar 

  • Rohani, P. and G. D. Ruxton (1999). Dispersal-induced instabilities in host-parasitoid metapopulations. Theor. Popul. Biol. 55, 23–36.

    Article  Google Scholar 

  • Ruxton, G. D. (1996). Density-dependent migration and stability in a system of linked populations. Bull. Math. Biol. 58, 643–660.

    Article  MATH  Google Scholar 

  • Segel, L. A. (1984). Taxes in cellular ecology, In Mathematical Ecology, S. A. Levin, (Ed.), Lecture Notes in Biomathematics 54, pp. 407–424.

  • Silva, J. A. L., M. L. De Castro and D. A. R. Justo (2001). Stability in a metapopulation model with density-dependent dispersal. Bull. Math. Biol. 63, 485–505.

    Article  Google Scholar 

  • Skellam, J. G. (1973). The formulation and interpretation of mathematical models of diffusionary processes in population biology, in Mathematical Theory of Dynamics of Biological Populations, M. S. Barlett and R. W. Hiorns (Eds), New York: Academic Press, pp. 63–85.

    Google Scholar 

  • Thieme, H. R. (1979a). Asymptotic estimates of solutions of nonlinear integral equations and asymptotic speeds for the spread of populations. J. Reine Angew. Math. 306, 94–121.

    MATH  MathSciNet  Google Scholar 

  • Thieme, H. R. (1979b). Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread. J. Math. Biol. 8, 173–187.

    Article  MATH  MathSciNet  Google Scholar 

  • Turing, A. (1952). The chemical basis of morphogenesis. Phil. Trans. R. Soc. B. 237, 37–72.

    Google Scholar 

  • Weinberger, H. F., M. A. Lewis and B. Li (2002). Analysis of linear determinacy for spread in cooperative models. J. Math. Biol. 45, 183–218.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxin Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Diekmann, O. & Van Den Bosch, F. Double-jump migration and diffusive instability. Bull. Math. Biol. 66, 487–504 (2004). https://doi.org/10.1016/j.bulm.2003.09.004

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2003.09.004

Keywords

Navigation