Skip to main content
Log in

Novel Mesoporous Hydroxyapatite/Chitosan Composite for Bone Repair

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The objective of the present investigation was to evaluate the osteogenic properties of mesoporous Hydroxyapatite/Chitosan (HA/CS) composite in vitro and in vivo. HA/CS composite was successfully prepared and synthesized using a freeze-drying method, and then characterized by Scanning Electron Microscope (SEM). Results show that the mesoporous HA/CS composite presents high surface area and porosity. The effects of mesoporous HA/CS on early adhesion, proliferation and differentiation of osteoblast cells in vitro were measured. MTT cytotoxicity test and cell adhesion test show that the composite has good biocompatibility and promotes cell viability and proliferation. In vitro tests show that osteoblast-like cells on the composite surfaces are able to adhere, proliferate, and migrate through the pores. These cells maintained similar expression levels of osteoblastic-associated markers namely Collagen type I (COL-I), Bone Morphogenetic Protein 2(BMP-2). Histologic analysis and radiological analysis in vivo also prove that mesoporous HA/CS composite can be used to repair bone defect as a new kind of bone grafting materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basu D, Sinha M K. A Process for the Production of Improved Porous Ocular Implants and Improved Porous Ocular Implants Produced Thereby, Patent no. 197588, India, 2006.

    Google Scholar 

  2. Sánchez E, Baro M, Soriano I, Perera A, Évora C. In vivo—in vitro study of biodegradable and osteointegrable gentamicin bone implants. European Journal of Pharmaceutics and Biopharmaceutics, 2001, 52, 151–158.

    Article  Google Scholar 

  3. Eggli P S, Müller W, Schenk R K. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clinical Orthopaedics and Related Research, 1988, 232, 127–138.

    Google Scholar 

  4. Le Nihouannen D, Daculsi G, Saffarzadeh A, Gauthier O, Delplace S, Pilet P, Layrolle P. Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. Bone, 2005, 36, 1086–1093.

    Article  Google Scholar 

  5. Habibovic P, Kruyt M C, Juhl M V, Clyens S, Martinetti R, Dolcini L, Theilgaard N, van Blitterswijk C A. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes. Journal of Orthopaedic Research, 2008, 26, 1363–1370.

    Article  Google Scholar 

  6. Wang H L, Zhai L F, Li Y H, Shi T. Preparation of irregular mesoporous hydroxyapatite. Materials Research Bulletin, 2008, 43, 1607–1614.

    Article  Google Scholar 

  7. Zhang S H, Wang Y J, Wei K, Liu X J, Chen J D, Wang X D. Template-assisted synthesis of lamellar mesostructured hy-droxyapatites. Materials Letters, 2007, 61, 1341–1345.

    Article  Google Scholar 

  8. Madhavi S, Ferraris C, White T J. Synthesis and crystallization of macroporous hydroxyapatite. Journal of Solid State Chemistry, 2005, 178, 2838–2845.

    Article  Google Scholar 

  9. Zhao D, Yang P, Melosh N, Feng J, Chmelka B F, Stucky G D. Continuous mesoporous silica films with highly ordered large pore structures. Advanced Materials, 1998, 10, 1380–1385.

    Article  Google Scholar 

  10. Xue W, Bandyopadhyay A, Bose S. Mesoporous calcium silicate for controlled release of bovine serum albumin protein. Acta Biomaterialia, 2009, 5, 1686–1696.

    Article  Google Scholar 

  11. Wei J, Jia J, Wu F, Wei S, Zhou H, Zhang H, Shin JW, Liu C. Hierarchically microporous/ macroporous scaffold of magnesium—calcium phosphate for bone tissue regeneration. Biomaterials, 2010, 31, 1260–1269.

    Article  Google Scholar 

  12. Elliott J C, Holcomb D W, Young R A. Infrared determination of the degree of substitution of hydroxyl by carbonate ions in human dental enamel. Calcified Tissue International, 1985, 37, 372–375.

    Article  Google Scholar 

  13. Rouahi M, Gallet O, Champion E, Dentzer J, Hardouin P, Anselme K. Influence of hydroxyapatite microstructure on human bone cell response. Journal of Biomedical Materials Research A, 2006, 78, 222–235.

    Article  Google Scholar 

  14. Fierz F C, Beckmann F, Huser M, Irsen S H, Leukers B, Witte F, Degistirici O, Andronache A, Thie M, Muller B. The morphology of anisotropic 3D-printed hydroxyapatite scaffolds. Biomaterials, 2008, 29, 3799–3806.

    Article  Google Scholar 

  15. Teixeira S, Ferraz M P, Monteiro F J. Biocompatibility of highly macroporous ceramic caffolds: Cell adhesion and morphology studies. Journal of Materials Science: Materials in Medicine, 2008, 19, 855–859.

    Google Scholar 

  16. Guo X, Gough J E, Xiao P, Liu J, Shen Z. Fabrication of nanostructured hydroxyapatite and analysis of human os-teoblastic cellular response. Journal of Biomedical Materials Research A, 2007, 82, 1022–1032.

    Article  Google Scholar 

  17. Ferraz M P, Monteiro F J, Manuel C M. Hydroxyapatite nanoparticles: A review of preparation methodologies. Journal of Applied Biomaterials & Biomechanics, 2004, 2, 74–80.

    Google Scholar 

  18. Murugan R, Ramakrishna S. Development of nano-composites for bone grafting. Composites Science and Technology, 2005, 65, 2385–2406.

    Article  Google Scholar 

  19. Wahl D A, Czernuszka J T. Collagen-hydroxyapatite composites for hard tissue repair. European Cells and Materials, 2006, 11, 43–46.

    Article  Google Scholar 

  20. Chen Q Z, Wong C T, Lu W W, Cheung K M, Leong J C, Luk K D. Strengthening mechanisms of bone bonding to crystalline hydroxyapatite in vivo. Biomaterials, 2004, 25, 4243–4254.

    Article  Google Scholar 

  21. Yang P P, Quan Z W, Li C X, Kang X J, Lian H Z, Lin J. Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials, 2008, 28, 4341–4347.

    Article  Google Scholar 

  22. Kuhne J H, Bartl R, Frisch B, Hammer C, Jansson V, Zimmer M. Bone formation in coralline hydroxyapatite: Effects of pore size studied in rabbits. Acta Orthopaedica Scandinavica, 1994, 65, 246–252.

    Article  Google Scholar 

  23. Kong L, Gao Y, Lu G, Gong Y, Zhao N, Zhang X. A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. European Polymer Journal, 2006, 42, 3171–3179.

    Article  Google Scholar 

  24. Chen W, Oh S, Ong A P, Oh N, Liu Y, Courthey H S, Appleford M, Ong J L. Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol-gel process. Journal of Biomedical Materials Research A, 2007, 82, 899–906.

    Article  Google Scholar 

  25. Stigter M, de Groot K, Layrolle P. Incorporation of tobra-mycin into biomimetic hydroxyapatite coating on titanium. Biomaterials, 2002, 23, 4143–4153.

    Article  Google Scholar 

  26. Klokkevold P R, Lew D S, Ellis D G, Derrien A C. Effect of chitosan on lingual hemostasis in rabbits with Platelet dys-funetion induced by epoprostenol. Journal of Oral Maxillofacial Surgery, 1992, 50, 41–45.

    Article  Google Scholar 

  27. Sundararajan V M, Howard V T M. Porous chitosan scaffolds for tissue engineering. Biomaterials, 1999, 20, 1133–1142.

    Article  Google Scholar 

  28. Yamaguchi I, Tokuchi K, Fukuzaki H, Kayama Y, Takakuda K, Monma H, Tanaka J. Preperation and mechanical properties of chitosan/hydroxyapatite nanocomposites. Key Engineering Materials, 2001, 192–195, 673–676.

    Article  Google Scholar 

  29. Liu T Y, Chen S Y, Li J H, Liu D M. Study on drug release behavior of CDHA/chitosan nanocomposites—Effect of CDHA nanoparticles. Journal of Control Release, 2006, 112, 88–95.

    Article  Google Scholar 

  30. Teng S H, Lee E J, Yoon B H, Shin D S, Kim H E, Oh J S. Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. Journal of Biomedical Materials Research A, 2009, 88, 569–580.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jincheng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Liu, G., Wu, Q. et al. Novel Mesoporous Hydroxyapatite/Chitosan Composite for Bone Repair. J Bionic Eng 9, 243–251 (2012). https://doi.org/10.1016/S1672-6529(11)60117-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(11)60117-0

Keywords

Navigation